
TRANSFER LEARNING IN
CONVOLUTIONAL NEURAL NETWORKS

FOR FINE-GRAINED IMAGE
CLASSIFICATION

THESIS

Nicholas C. Becherer, 2nd Lieutenant, USAF

AFIT-ENG-MS-17-M-005

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-17-M-005

TRANSFER LEARNING IN CONVOLUTIONAL NEURAL NETWORKS FOR

FINE-GRAINED IMAGE CLASSIFICATION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Nicholas C. Becherer, B.S.E.E.

2nd Lieutenant, USAF

March 2017

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-17-M-005

TRANSFER LEARNING IN CONVOLUTIONAL NEURAL NETWORKS FOR

FINE-GRAINED IMAGE CLASSIFICATION

THESIS

Nicholas C. Becherer, B.S.E.E.
2nd Lieutenant, USAF

Committee Membership:

Lt Col J. M. Pecarina, PhD
Chair

Dr. S. L. Nykl
Member

Dr. K. M. Hopkinson
Member

AFIT-ENG-MS-17-M-005

Abstract

In recent years, convolutional neural networks have achieved state of the art perfor-

mance in a number of computer vision problems such as image classification. Prior

research has shown that a transfer learning technique known as parameter fine-tuning

wherein a network is pre-trained on different datasets can boost the performance of

these networks. However, the topic of identifying the best source dataset and learning

strategy for a given target domain is largely unexplored. Thus, this research presents

and evaluates various transfer learning methods for fine-grained image classification

as well as the effect on ensemble networks. The main contributions are a framework

to evaluate the effectiveness of transfer learning, an optimal strategy for parame-

ter fine-tuning, and a thorough demonstration of its effectiveness. The experimental

framework and findings will help to train models in reduced time and with improved

accuracy for target recognition and automated aerial refueling.

iv

Acknowledgements

First and foremost, I would like to thank my advisor Lieutenant Colonel John

Pecarina for providing the guidance and direction I needed to start and finish this

document. I would like to thank my teachers for giving me the background that

was necessary to even attempt this. Lastly, I would like to thank all my friends and

classmates without whom I probably wouldn’t have been able to finish this program.

Nicholas C. Becherer

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . xvii

I. Introduction . 1

1.1 Background and Motivation . 1
1.2 Problem Statement and Research Goals . 2
1.3 Approach . 2
1.4 Assumptions and Limitations . 4
1.5 Thesis Organization . 5

II. Background and Related Works . 7

2.1 Background . 7
2.1.1 Artificial Neural Networks . 7
2.1.2 Backprop . 10
2.1.3 Early History of ConvNets . 11
2.1.4 Applying Convolution to Computer Vision

Problems . 13
2.1.5 ImageNet Competitions and AlexNet . 17

2.2 Related Works in Transfer Learning for ConvNets 21
2.2.1 Regions With CNN features . 22
2.2.2 CNN Features off-the-shelf: an Astounding

Baseline for Recognition . 25
2.2.3 From Generic to Specific Deep Representations

for Visual Recognition . 27
2.2.4 How Transferable are Features in Deep Neural

Networks?
29

III. Methodology . 32

3.1 Fine-Grained Imagery Datasets . 34
3.2 Experimental Design . 44

3.2.1 Constant Parameters . 45
3.2.2 Determining Specificity of Features . 48
3.2.3 Optimizing Learning Rate . 48
3.2.4 Measuring Effect of Source Task on Target Task 49

vi

Page

3.2.5 Comparing Ensemble Networks . 50

IV. Results . 53

4.1 Determining Specificity of Features . 53
4.2 Optimizing Learn Rate . 59
4.3 Measuring Effect of Source Task on Target Task . 63

4.3.1 Signs . 64
4.3.2 Vegetables . 70
4.3.3 Dogs . 76
4.3.4 Cats . 82
4.3.5 Flowers . 89
4.3.6 Birds . 95
4.3.7 Planes . 100
4.3.8 Overall Results . 106

4.4 Comparing Ensemble Networks . 108

V. Conclusions . 110

5.1 Discussion of Results . 110
5.2 Future Work . 113
5.3 Final Remarks . 115

VI. Appendix A: Full Dataset Listing . 116

Bibliography . 132

vii

List of Figures

Figure Page

1 The organization of the thesis. 5

2 A basic neural network with 2 inputs and outputs and
one hidden layer. 8

3 The architecture of LeNet-5 [36] . 12

4 An example of the convolution operator in action. The
sum of the products of each pairwise value of the input x
and the kernel h generates one value in the feature map.
As the kernel slides, it generates the entire feature map y. 14

5 An example of a two random kernels applied to an
image. Random kernels tend to approximate edge
detectors [1]. 15

6 The architecture of AlexNet [31] . 18

7 Factors that must be considered for transfer learning
according to [4] . 27

8 The distribution of the data presented by major class. 35

9 A sample of the signs used in the dataset. Plain English
labels were not provided with the dataset. From left to
right: sign 021, sign 038, and sign 061. 35

10 A sample of the vegetables used in the dataset. From
left to right: black beans, eggplant, and pumpkin. 37

11 A sample of the dogs used in the dataset. From left to
right: Beagle, Dingo, and Border Collie. 39

12 A sample of the cats used in the dataset. From left to
right: Bengal, Siamese, and Persian. 40

13 A sample of the flowers used in the dataset. From left
to right: Azalea, Wild Pansy, and Japanese Anemone. 41

14 A sample of the birds used in the dataset. From left to
right: Cardinal, American crow, and Carolina Wren. 42

viii

Figure Page

15 A sample of the planes used in the dataset. From left to
right: A-10, Spitfire, and Boeing 737. 43

16 The results of the 1-layer network. Left: The confusion
matrix generated by the best model with only 1-layer
transferred. Right: The accuracy on the test set over
training. 53

17 The results of the 2-layer network. Left: The confusion
matrix generated by the best model with only 2-layers
transferred. Right: The accuracy on the test set over
training. 54

18 The results of the 3-layer network. Left: The confusion
matrix generated by the best model with only 3-layers
transferred. Right: The accuracy on the test set over
training. 54

19 The results of the 4-layer network. Left: The confusion
matrix generated by the best model with only 4-layers
transferred. Right: The accuracy on the test set over
training. 55

20 The results of the 5-layer network. Left: The confusion
matrix generated by the best model with only 5-layers
transferred. Right: The accuracy on the test set over
training. 56

21 The results of the 6-layer network. Left: The confusion
matrix generated by the best model with only 6-layers
transferred. Right: The accuracy on the test set over
training. 56

22 The results of the 7-layer network. Left: The confusion
matrix generated by the best model with only 7-layers
transferred. Right: The accuracy on the test set over
training. 57

23 The results of all the layer-wise networks. Left: The
performance of all the networks on one figure. Right:
The best accuracy of each network. 58

ix

Figure Page

24 The result of the network with a .2 multiplier. Left:
The performance of all the layer-wise networks on one
figure based on their learn rate multiplier. Right: The
best accuracy of each network. 59

25 The result of the network with a .4 multiplier. Left:
The confusion matrix generated by the best model
trained with a .4 multiplier in the learned layers. Right:
The accuracy on the test set over training. 60

26 The result of the network with a .6 multiplier. Left:
The confusion matrix generated by the best model
trained with a .6 multiplier in the learned layers. Right:
The best accuracy of each network. 61

27 The result of the network with a .8 multiplier. Left:
The confusion matrix generated by the best model
trained with a .8 multiplier in the learned layers. Right:
The best accuracy of each network. 61

28 Results from the plane generalist network. Left: The
confusion matrix generated by the best model for plane
with initialization from the generalist superset network.
Right: The accuracy on the test set over training. 62

29 The combined results of all the networks with different
learning rate multipliers. Left: The performance of all
the networks on one figure based on their learn rate
multiplier. Right: The best accuracy of each network. 63

30 Results from the sign scratch network. Left: The
confusion matrix generated by the best model for sign
with random initialization. Right: The accuracy on the
test set over training. 64

31 Results from the sign generalist network. Left: The
confusion matrix generated by the best model for sign
with initialization from the generalist superset network.
Right: The accuracy on the test set over training. 65

32 Results from the sign high-fan network. Left: The
confusion matrix generated by the best model for sign
with initialization from the high-fan superset network.
Right: The accuracy on the test set over training. 66

x

Figure Page

33 Results from the sign generalist-without network. Left:
The confusion matrix generated by the best model for
sign with initialization from the generalist superset
network without sign data. Right: The accuracy on the
test set over training. 67

34 Results from the sign high-fan-without network. Left:
The confusion matrix generated by the best model for
sign with initialization from the high-fan superset
network without sign data. Right: The accuracy on the
test set over training. 68

35 The performance of all sign networks on one figure. 69

36 The best accuracy of all sign networks on one figure. 69

37 Results from the vegetable scratch network. Left: The
confusion matrix generated by the best model for
vegetable with random initialization. Right: The
accuracy on the test set over training. 70

38 Results from the vegetable generalist network. Left:
The confusion matrix generated by the best model for
vegetable with initialization from the generalist superset
network. Right: The accuracy on the test set over
training. 71

39 Results from the vegetable high-fan network. Left: The
confusion matrix generated by the best model for
vegetable with initialization from the high-fan superset
network. Right: The accuracy on the test set over
training. 72

40 Results from the vegetable generalist-without network.
Left: The confusion matrix generated by the best model
for vegetable with initialization from the generalist
superset network without vegetable data. Right: The
accuracy on the test set over training. 73

41 Results from the vegetable high-fan-without network.
Left: The confusion matrix generated by the best model
for vegetable with initialization from the high-fan
superset network without vegetable data. Right: The
accuracy on the test set over training. 74

xi

Figure Page

42 The performance of all vegetable networks on one figure. 75

43 The best accuracy of all vegetable networks on one figure. 75

44 Results from the dog scratch network. Left: The
confusion matrix generated by the best model for dog
with random initialization. Right: The accuracy on the
test set over training. 76

45 Results from the dog generalist network. Left: The
confusion matrix generated by the best model for dog
with initialization from the generalist superset network.
Right: The accuracy on the test set over training. 77

46 Results from the dog high-fan network. Left: The
confusion matrix generated by the best model for dog
with initialization from the high-fan superset network.
Right: The accuracy on the test set over training. 78

47 Results from the dog generalist-without network. Left:
The confusion matrix generated by the best model for
dog with initialization from the generalist superset
network without dog data. Right: The accuracy on the
test set over training. 79

48 Results from the dog high-fan-without network. Left:
The confusion matrix generated by the best model for
dog with initialization from the high-fan superset
network without dog data. Right: The accuracy on the
test set over training. 80

49 The performance of all dog networks on one figure. 81

50 The best accuracy of all dog networks on one figure. 81

51 Results from the cat scratch network. Left: The
confusion matrix generated by the best model for cat
with random initialization. Right: The accuracy on the
test set over training. 82

52 Results from the cat generalist network. Left: The
confusion matrix generated by the best model for cat
with initialization from the generalist superset network.
Right: The accuracy on the test set over training. 83

xii

Figure Page

53 Results from the cat high-fan network. Left: The
confusion matrix generated by the best model for cat
with initialization from the high-fan superset network.
Right: The accuracy on the test set over training. 84

54 Results from the cat generalist-without network. Left:
The confusion matrix generated by the best model for
cat with initialization from the generalist superset
network without cat data. Right: The accuracy on the
test set over training. 85

55 Results from the cat high-fan-without network. Left:
The confusion matrix generated by the best model for
cat with initialization from the high-fan superset
network without cat data. Right: The accuracy on the
test set over training. 86

56 The performance of all cat networks on one figure. 87

57 The best accuracy of all cat networks on one figure. 87

58 Results from the flower scratch network. Left: The
confusion matrix generated by the best model for flower
with random initialization. Right: The accuracy on the
test set over training. 89

59 Results from the flower generalist network. Left: The
confusion matrix generated by the best model for flower
with initialization from the generalist superset network.
Right: The accuracy on the test set over training. 89

60 Results from the flower high-fan network. Left: The
confusion matrix generated by the best model for flower
with initialization from the high-fan superset network.
Right: The accuracy on the test set over training. 90

61 Results from the flower generalist-without network.
Left: The confusion matrix generated by the best model
for flower with initialization from the generalist superset
network without flower data. Right: The accuracy on
the test set over training. 91

xiii

Figure Page

62 Results from the flower high-fan-without network. Left:
The confusion matrix generated by the best model for
flower with initialization from the high-fan superset
network without flower data. Right: The accuracy on
the test set over training. 92

63 The performance of all flower networks on one figure. 93

64 The best accuracy of all flower networks on one figure. 93

65 Results from the bird scratch network. Left: The
confusion matrix generated by the best model for bird
with random initialization. Right: The accuracy on the
test set over training. 95

66 Results from the bird generalist network. Left: The
confusion matrix generated by the best model for bird
with initialization from the generalist superset network.
Right: The accuracy on the test set over training. 95

67 Results from the bird high-fan network. Left: The
confusion matrix generated by the best model for bird
with initialization from the high-fan superset network.
Right: The accuracy on the test set over training. 96

68 Results from the bird generalist-without network. Left:
The confusion matrix generated by the best model for
bird with initialization from the generalist superset
network without bird data. Right: The accuracy on the
test set over training. 97

69 Results from the bird high-fan-without network. Left:
The confusion matrix generated by the best model for
bird with initialization from the high-fan superset
network without bird data. Right: The accuracy on the
test set over training. 98

70 The performance of all bird networks on one figure. 99

71 The best accuracy of all bird networks on one figure. 99

72 Results from the plane scratch network. Left: The
confusion matrix generated by the best model for plane
with random initialization. Right: The accuracy on the
test set over training. 100

xiv

Figure Page

73 Results from the plane generalist network. Left: The
confusion matrix generated by the best model for plane
with initialization from the generalist superset network.
Right: The accuracy on the test set over training. 101

74 Results from the plane high-fan network. Left: The
confusion matrix generated by the best model for plane
with initialization from the high-fan superset network.
Right: The accuracy on the test set over training. 102

75 Results from the plane generalist-without network. Left:
The confusion matrix generated by the best model for
plane with initialization from the generalist superset
network without plane data. Right: The accuracy on
the test set over training. 103

76 Results from the plane high-fan-without network. Left:
The confusion matrix generated by the best model for
plane with initialization from the high-fan superset
network without plane data. Right: The accuracy on
the test set over training. 104

77 The performance of all plane networks on one figure. 105

78 The best accuracy of all plane networks on one figure. 105

79 The reduction in error rate for all datasets using the
scratch network as the baseline performance. 107

80 The confusion matrices for the ensemble networks. Left:
The confusion matrix generated by the ensemble of
scratch networks. Right: The confusion matrix
generated by the ensemble of fine-tuned networks. 108

81 Comparison of the ensemble networks and the top
performing scratch and fine-tuned networks . 109

82 The results of all the layer-wise networks. Left: The
performance of all the networks on one figure. Right:
The best accuracy of each network. 110

83 The combined results of all the networks with different
learning rate multipliers. Left: The performance of all
the networks on one figure based on their learn rate
multiplier. Right: The best accuracy of each network. 111

xv

Figure Page

84 Comparison of the ensemble networks and the top
performing scratch and fine-tuned networks . 113

xvi

List of Tables

Table Page

1 A high-level overview of the dataset . 34

2 A comprehensive list of all the minor classes in the sign
class. 36

3 A comprehensive list of the images in the vegetable class. 38

4 A subset of the minor classes in the dog class. See
Appendix A for the full table. 40

5 A comprehensive list of the minor classes in the cat class. 40

6 A subset of the minor classes in the flower class. See
Appendix A for the full table. 42

7 A subset of the minor classes in the bird class. See
Appendix A for the full table. 42

8 A subset of the minor classes in the plane class. See
Appendix A for the full table. 44

9 A tabulation of the “winners” from the third experiment. 106

10 The reduction in error rate for each dataset . 107

11 A tabulation of the “winners” from the third experiment. 112

12 Feasible triples for a highly variable Grid . 116

xvii

TRANSFER LEARNING IN CONVOLUTIONAL NEURAL NETWORKS FOR

FINE-GRAINED IMAGE CLASSIFICATION

I. Introduction

1.1 Background and Motivation

In recent years, Convolutional Neural Networks (ConvNets) have become increas-

ingly popular for a number of computer vision problems such as image classification

[31], image localization, and image segmentation [22]. The research presented is of

interest to anyone who is in the computer vision field and autonomy. Target recogni-

tion is an important task for computer vision. In particular, fine-grained classification

is an important problem for fields such as surveillance. While it is simple to identify

something like a tank, identifying a friendly or enemy tank is more difficult. This is an

important goal for automating surveillance. Another application would be automated

aerial refueling. Before a refueling aircraft could begin doing any sort of modeling

of the receiver aircraft, it would need to first correctly identify the receiver aircraft.

This makes image classification a critical step. This research also has application to

civilian fields such as search and rescue as well as robotics.

In order to be effective, ConvNets require a large amount of labeled data and a

massive number of supervised training iterations. One technique that has been shown

to improve the performance of a ConvNet is to use a ConvNet trained on a different

dataset and use it as the initialization for the current problem. This technique is

known as parameter fine-tuning. While it has been shown that this generally leads to

better performance than random initialization [52], research in this area is relatively

1

scarce and is far from complete.

1.2 Problem Statement and Research Goals

Research has shown that parameter fine-tuning is an effective form of transfer

learning for ConvNets [22][52]. This suggests that ConvNets learn some set of fea-

tures from the source dataset that is universal for many or all datasets. This thesis

investigates the universality of features, especially when taken from general or fine-

grained classifiers for use on fine-grained classification. More specifically, the questions

this thesis seeks to answer are:

1. When transferring learned layers, how much learning is necessary in the pre-

trained layers?

2. For fine-grained classification, what type of dataset serves as the best source

task?

3. Do ensembles of fine-tuned ConvNets outperform ensembles of randomly ini-

tialized ConvNets?

This thesis executes an experimental approach to analyze concepts such as transfer

learning in ConvNets. In so doing a set of experiments to evaluate different transfer

learning strategies, we can answer the above questions and present best practices for

transfer learning applied to fine-grained image classification.

1.3 Approach

The methodology is fully presented in chapter 3, but this section provides a brief

overview of the methodology. Before the experiment can be fully described, the un-

derlying dataset must be explained. This thesis aggregates seven fine-grained datasets

that are freely available. These datasets are then given a major classification. The

2

major classifications are dog, plane, sign, bird, flower, cat, and vegetable. Within

each major classification is a number of minor classifications. For example, dog has

111 minor classes corresponding to different breeds of dogs such as Border Collie and

Rottweiler. No major class has the same number of minor classes or images. For

example, dog has 71947 images across 111 minor classes while cat has 2392 images

across 12 categories.

From this, there are three different types of networks trained. The first two are

called superset networks and are trained on data from all or almost all of the major

classes. If the superset network does coarse-grained classification at the major class

level (e.g. dog vs. plane), it is called a generalist superset network. If the superset

network does fine-grained classification (e.g. Border Collie vs. 737), it is called a high-

fan out or just high-fan superset network. The last type of network only performs

fine-grained classification on a single major class and is called a specialist network.

To answer research question one, an experiment is presented to show how Con-

vNets require learning in transferred layers. By progressively transferring and freezing

layers, we show a decrease in accuracy. A followup experiment shows that by adjust-

ing the learn rate in the transferred layers accuracy increases. Taken together, these

experiments help to empirically identify the optimal learn rate for transfer learning.

Next, this thesis addresses question two proposed in the problem statement based

on the results of five different initializations of each specialist network. First, the

specialist network is trained from random initialization to serve as a control. Next,

it is trained using the superset high-fan and generalist networks as the initialization.

This allows us to determine whether fine-grained or coarse-grained networks serve as

a better source for fine-grained classification. Next, we use the superset high-fan and

generalist networks trained on the dataset without the major class that specialist is

training on. This source is more distant from the superset networks trained on the full

3

dataset, allowing us to measure the effect of distance on the target dataset. Lastly,

since each of the major classes has a different amount of training data available, we’ll

be able to measure the effect of training data on the target task because there are

seven different target tasks.

Lastly, an ensemble of fine-tuned ConvNets generated by the previous experi-

ment are compared to an ensemble of randomly initialized ConvNets. This allows

comparison of transfer learning and ensemble classifiers.

1.4 Assumptions and Limitations

The network architecture used for this thesis is AlexNet [31]. As explained in

chapter 2, it is no longer the leading architecture in the field. However, due to

computational time restraints, it was used as the model for this experiment. It is

assumed that the results would scale up to more advanced architectures.

The assumption that features learned by ConvNets are somewhat universal is

based on the observation that parameter fine-tuning has been effective. Since training

a ConvNet is really just an optimization problem approximated by gradient descent,

it is possible that using a random initialization can achieve the same or better results.

However, the fact that parameter fine-tuning has been shown to be effective suggests

that the local minima found in a previous problem is closer to the local minima of

most problems. This is the basis for the assumption that weights learned in ConvNets

are somewhat universal.

Several related questions are beyond the scope of this thesis and are not answered

by it. The target task in this research is fine-grained classification. The effect on other

target tasks is not examined. Often times, a network trained on the ImageNet dataset

is used as the source task [52]. This dataset is a mixture of fine- and coarse-grained

data. This sort of network is not examined and would require a different dataset.

4

A different type of transfer learning uses a ConvNet trained on a dataset (again,

usually ImageNet) as a fixed feature extractor for use in algorithms designed to solve

other visual problems [22][4][44]. This sort of transfer learning is also beyond the

scope of this thesis, although the framework established here could be applied to this

technique as well.

1.5 Thesis Organization

This thesis is organized into several chapters as shown. The first chapter serves

as an introduction to the thesis as a whole. It explains the purpose of the problem,

the scope of this research, and the goals of the research. The overall format is shown

in figure 1.

Figure 1. The organization of the thesis.

Chapter 2 begins with an in depth explanation of convolutional neural networks,

explaining the algorithms and technical details required to understand them. It will

then present a brief history explaining how convolutional neural networks came to be

the leading technique for image classification. Then, it explores current state of the

art implementations and research in the area of ConvNets. This particular section will

especially focus on transfer learning for image classification and other visual problems.

This helps us identify gaps in the current understanding that this thesis will in part

seek to fill.

Chapter 3 serves to provide a methodology to fill these gaps. Specifically, we will

present a method for evaluating the effects of transfer learning on a target dataset.

5

The goal is to provide insight on whether ConvNets can learn general features that

can be applied universally to all datasets or whether a network learns features specific

to that dataset. Several networks will be trained with varying degrees of finely-

grained data. Then a specialist network will be trained for a particular data subset

using the learned weights from the previous networks as initialization. They will also

be initialized randomly to serve as a control group. This will give us insight into

whether or not the features that a convolutional neural network learns are general to

all imagery or specific to the dataset in question.

Chapter 4 then details the implementation of the methodology and the results.

It will present a dataset of annotated images for the evaluated networks to classify.

These annotations will serve as the ground truth on which to judge the accuracy

of the networks. The accuracy between the networks trained on specific subset of

data but with a different initialization will be compared. This should give insight

into whether or not the features are general or specific to the dataset and therefore

whether or not features are general.

Lastly, Chapter 5 will then summarize the findings of this research. It will present

the conclusions that may be drawn from the results in chapter 4. It will also offer

areas of interest for future research and how they may be addressed.

6

II. Background and Related Works

2.1 Background

Convolutional Neural Networks are not a new topic, but they have recently risen to

prominence after years of relative neglect. ConvNets are a machine learning technique

that have proven to be useful in a number of areas from image classification [48] to

speech recognition [14] to drug discovery [3]. They can trace their lineage back to

Fukushima’s Neocognitron from the ’80s [20]. With the introduction of training

through stochastic gradient descent, they were able to solve a number of problems.

However, difficulty in getting them to scale to larger problems led to a loss of interest

after the 1990s. In recent years, several researchers have successfully demonstrated

their ability to scale and to achieve state of the art results in open computer vision

problems [31].

2.1.1 Artificial Neural Networks.

As the name implies, Convolutional Neural Networks are an extension on artificial

neural networks. Both are supervised machine learning techniques. They are repre-

sented as a directed, acyclic graph and provide a rough approximation of a biological

neural network. A basic artificial neural network is shown in figure 2.

The circles represent neurons and the lines connecting them represent weights. A

vertical column of neurons is referred to as a layer. The leftmost layer is known as

the input layer or layer 0 and the rightmost layer is known as the output layer. All

layers in between are referred to as hidden layers. The lines connecting layers are

collectively referred to as a weight matrix.

The elements of the input to a layer is referred to as lxi where i is between 1 and

the number of inputs and l is the layer. An activation function is usually applied to

7

Figure 2. A basic neural network with 2 inputs and outputs and one hidden layer.

8

the input of the neuron such that lyi = fl(
lxi), where fl is the activation function

for that particular layer. The individual weights connecting neurons are are referred

to as lwij where l is the previous layer, i is the neuron in the next layer to which

the weight connects, and j is the neuron in the previous layer from which the weight

connects. So 1w21 is the weight that connects the value from the layer 1 neuron 1 to

layer 2 neuron 2. The value of lxi, where x is the input of neuron i of layer l, is

lxi =
J∑

j=1

(l−1yj)(
l−1wij) (1)

Activation functions usually have several important properties. First, they need to

be nonlinear. If a linear function is chosen as the activation function, then the neural

network can only learn linear functions. Typical choices for activation functions in-

clude hyperbolic tangent and the sigmoid function. By applying a linear combination

of nonlinear activation functions, any arbitrary function can be approximated[16].

Two special cases should be noted. First, there is usually no activation function

applied to the input layer. Second, in the case of classifier networks, the softmax

function is often used as the activation on the output layer. This translates a set of

real numbers into a probability distribution between 0 and 1 exclusive. Since it is a

probability distribution, the outputs sum to one. The softmax function is defined as

σ(xi) =
exi

I∑
i=1

exi

(2)

By using exponentials, the softmax function forces all probabilities to be positive

and highlights the maximum value while suppressing values less than the maximum.

9

2.1.2 Backprop.

Neural networks can approximate a function given the right set of weights. How-

ever, it is extremely difficult to know the optimal set of weights a priori or even what

the function to approximate is. Neural networks rely on an algorithm known as back-

propagation to find these weights. The basic overview of the process begins with a

sample input and a known output for that sample. An error function is then used to

compare the expected result with the actual result. After the error is calculated, a

credit assignment process determines the error caused by each individual weight and

adjusts them proportionally. This algorithm is known as backpropagation or back-

prop. The initial error is determined by the loss function of the network. As we move

backwards across the layers, gradient descent is used to calculate the error in earlier

layers. Hence the error at the output of the network propogates backwards through

the entire network.

The multinomial logistic loss or cross entropy loss function is usually chosen as

the error function for classifiers. For each output, the error is referred to as Ei, the

expected output is Yi, and the actual output is yi.

Ei = −Yi ∗ log(yi) (3)

For each neuron, there is an associated error lδi. For the output layer lδi is the

output of the multinomial logistic loss function times the gradient of the activation

function, or lδi = f ′(lxi) ∗ Ei. For every other layer, it is the same times the weights

connected to that neuron. In general the delta for a layer is

l−1δi = (f ′l)(
lxi)(

lδi)
J∑

j=1

l−1wji (4)

The output layer is just a special case where there is only one weight equal to one

10

and δ is equal to E. The amount to adjusts the weights is then

∆lwij = (λ)(lδi)(
lyj) (5)

where λ is the learning rate hyper-parameter. After this has been calculated for

every layer and weight in the network, the weights are updated such that

lwij =l wij − ∆lwij (6)

This entire process represents one training iteration of the backprop algorithm

[21].

Performing backprop on one example at a time is referred to as online learning.

Performing on multiple examples at a time can be done by averaging the gradient from

each example. When the entire training set is used during backprop, the process is

referred to as batch learning. Anywhere between batch and online learning is referred

to as minibatch learning. The backprop algorithm is only guaranteed to converge if

batch learning is used [7]. However, due to computational restraints, minibatch is

usually used. This process is often performed stochastically by choosing examples in

a random order. With an appropriate learning rate, stochastic gradient descent is

almost guaranteed to converge to a local minima [10].

2.1.3 Early History of ConvNets.

Aside from neural networks, ConvNets owe some credit to the early work in un-

derstanding mammalian vision systems [25][26]. Hubel and Weiss discovered that

mammalian visual systems consisted of a light exciting the optical system and trans-

mitting a signal through a series of dense nerves to the primary visual cortex of the

brain. Their experiments lead to the discovery that mammalian eyes were especially

11

sensitive to edges and blobs of color [40]. This biological system served as the in-

spiration for Fukushima’s neocognitron architecture in the early 1980s [20]. These

architectures introduced some of the ideas that would later make ConvNets success-

ful, such as invariance to translation. However, Fukushima lacked both an effective

method for training these systems and the computational power that would later be

needed for a better method.

By 1989, LeCun et al presented the first successful convolutional neural network

[34]. Initially built as a system to automatically recognize digits, LeCun was able

to advance his network to read machine- and handwritten checks by the end of the

1990s [32][36]. LeCun named his architecture LeNet-5, and it demonstrates all of the

important concepts present in ConvNets, shown in figure 3.

Figure 3. The architecture of LeNet-5 [36]

LeNet-5 accepts a greyscale 32x32 image as the input. The first convolutional layer

contains 6 5x5 convolutional kernels which generate 6 28x28 feature maps (unlike

most ConvNets, LeNet-5 does not pad inputs to convolutional layers, causing the

feature map to have reduced dimensionality compared to the input). Each feature

map is downsampled by using a 2x2 average pooling filter with a stride of 2, reducing

the dimensionality by three quarters. 16 5x5 convolutions are applied to generate

16 10x10 feature maps. Another 2x2 average pooling filter is applied to reduce the

feature maps to 16 5x5 feature maps. These feature maps are then used as the input

to a fully-connected neural network. The first layer has 120 hidden neurons. The

12

second has 336 hidden neurons. The output layer has 95 neurons, corresponding to

95 different characters. Hyperbolic tangent is used as the activation function in the

fully connected layers.

2.1.4 Applying Convolution to Computer Vision Problems.

Artificial Neural Networks are ill suited for problems with inexact inputs. For

example, speech recognition is difficult for neural networks because the important

part of an audio clip may appear anywhere in the clip. Neural networks depend on

the same type of input features being passed to the input neurons. To overcome this,

some sort of preprocessing needs to be applied to the input to remove this variance

[32]. The convolution operation can help overcome this. Although convolution is

effective for other problems such as speech recognition, it will be discussed in the

context of visual problems because that is the focus of this thesis.

Visual problems tend to be inexact due to changes in position, lighting, size, and

orientation. To overcome this, a convolutional front end is added to the network [32].

Convolution is a slide and shift operation that combines two arbitrary functions. If the

functions are finite and discrete (like an image), then the operation can be thought of

as a window being applied to some portion of the input and pulling some information

from that localized window and representing it as a single value. Mathematically, the

function is

y[m,n] =
∞∑

k=−∞

∞∑
l=−∞

h[m− k, n− l]x[k, l] (7)

As the window slides along both dimensions of the image, a matrix is created

containing feature information about the original image. The second function or

matrix is called a convolutional kernel. The output of the convolution is called a

feature map. Figure 4 shows a simple example. The 2x2 kernel h slides over the

13

input x. The sum of the element-wise multiplication is the value generated for that

location. The input x is typically padded with some value for the case where the h

does not perfectly align. If it were 0-padded, the value of y[1, 1] would be −.5.

Figure 4. An example of the convolution operator in action. The sum of the products
of each pairwise value of the input x and the kernel h generates one value in the feature
map. As the kernel slides, it generates the entire feature map y.

In practice, convolution can be implemented as a modified version of a fully con-

nected neural network layer [35][15]. Since the same value is multiplied across several

input values, this can be implemented as forcing multiple weights to share a value.

Inputs not covered by the current window are connected by weights that are forced

to 0. These shared weights are then trainable using the same backprop algorithm.

The only difference is that the weight update is averaged across all neurons that are

forced to share the same value. This prevents them from diverging from their shared

values. The result is an efficient, parallel implementation of convolution where the

kernels are learnable.

The practical effect of convolution is to extract patterns or features from the

14

Figure 5. An example of a two random kernels applied to an image. Random kernels
tend to approximate edge detectors [1].

image regardless of position in the image. By applying it uniformly across the entire

image, a certain pattern will be extracted regardless of its position. It has long been

noted that kernels initialized with Gaussian noise tend to approximate Gabor filters

or edge detectors [18][23][32]. This suggests there may be some universality of features

learned by ConvNets. By having multiple convolutional layers in series, the network

can identify low level feaures, combinations of low-level features, and combinations of

combinations of low-level features and so on. This allows the network to detect high-

level features present in the original image [33]. After several convolutional layers,

these features are passed to the fully connected layers of the network and the system

is is able to classify them. Rather than classify the image based on the pixels, the

network classifies the image based on the patterns present.

Pooling. One downside to the addition of a convolutional layer is the ex-

plosion in the dimensionality for the entire network. In the example shown in figure

4, only one feature map is generated. In practice, most networks have dozens or hun-

dreds of kernels per convolutional layer. If a network had k layers with n convolutional

kernels each, the resulting convolutional layers would increase the dimensionality by

a factor of nk. Suppose the input of a network was a 228x228 image. The input would

have 51,984 features. After applying 3 convolutional layers with 96 kernels each, the

15

resulting output would be almost 46 billion features. If a 32-bit floating point number

was used to represent each feature, then the network would need 171GB to represent

the output. Training would require performing backprop on an amount of data that

is computationally unfeasible. This is obviously untenable and requires a solution.

It is then necessary to implement some form of downsampling or pooling to reduce

the dimensionality. Pooling operations typically have a fixed size window and certain

stride. The window applies some function (e.g. average or maximum) to the values

in it and reduces them to a single value. The window then slides across the feature

map by its stride. The stride is set up such that the pools may overlap, align on

the boundary, or not at all. For example, if a 2x2 pooling window with a stride

of 2 were applied to the feature map shown in figure 4, the output would be a 2x2

matrix. A 1x1 pool with a stride of 3 would also achieve the same reduction in

dimensionality, although it would not necessarily generate the same feature map. In

general, overlapping or boundary-aligned strides are desirable because they preserve

the locality of information. Non-overlapping strides leads to some information not be

considered in the downsampling process. This technique allows many convolutions to

be used without having to deal with the resulting explosion of dimensionality.

By the late 1990s, progress and research in neural networks began to stagnate for

several reasons [33]. The first was that computational cost greatly increases with input

size, which made training larger networks difficult and time consuming. The second

was the fear that gradient descent may be insufficient for large scale networks. It was

thought that this technique would be prone to getting stuck in local minima. Lastly,

larger networks were prone to overfitting and required large amounts of training data

to proper train. Prior to the growth of the Internet, this was difficult to acquire [40].

This stagnation continued through the early 2000s. Work on ConvNets continued

but rarely scaled beyond smaller problems. Most work focused on smaller datasets

16

such as the MNIST (handwritten digits), NORB (Toys), or CIFAR10 (10 random

objects) [19][37][29]. All of these datasets are either low resolution, greyscale, or

both. Instead, focus shifted towards new algorithms such as SIFT and SURF [38][6].

These algorithms are designed to extract features from images. Unlike convolutional

layers, however, these features extractors are engineered and do no learning. Impor-

tantly, it was shown that ConvNets were highly parallel and benefited from being

trained on GPUs; however, GPU processing required writing custom pixel shaders in

graphics libraries and was a significant barrier to research [11]. With these barriers,

researchers were unable to significantly advance ConvNets until the breakthrough

work demonstrated in AlexNet [31].

2.1.5 ImageNet Competitions and AlexNet.

In recent years, ConvNets have come back to the forefront of computer vision after

a number of breakthroughs. In particular, the work of Krizhevsky et al in the 2012

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) demonstrated the

viability of ConvNets for much more difficult problems. ILSVRC presented approxi-

mately 1 million images across 1000 classes. Krizhevsky et al managed to leverage a

number of recent ideas to scale a ConvNet. By utilizing these recent advances, they

managed to achieve state of the art results in accuracy, reducing the error rate of

the next best entry by almost half [31]. Before their submission, it was thought that

ConvNets of such scale would be prone to overfitting and would generalize poorly.

Krizhevsky et al demonstrated that this was not the case when a few new techniques

were utilized.

AlexNet used the Rectified Linear Unit (ReLU) as the activation function instead

of the more common hyperbolic tangent or the sigmoid function. The ReLU function

is defined as

17

Figure 6. The architecture of AlexNet [31]

ReLU(x) = argmax(0, x) (8)

ReLUs are non-linear, which means a two layer neural network composed of ReLUs

can approximate any arbitrary function. They are also differentiable, which means

they are an acceptable function for use in the backprop algorithm. Krizhevsky et

al chose the ReLU based on prior work showing that it would likely lead to faster

convergence over other activation functions [41].

AlexNet also used overlapping pooling boundaries, whereas LeNet-5 had used

boundary aligned pools. The authors stated that this reduces error rates and reduces

the propensity to overfit. To further reduce overfitting, the authors also introduced

a new technique known as dropout regularization [24]. Inspired by the stochastic

decision tree technique known as bagging, neurons in the fully connected layer are

selected for dropout with a probability p during each training iteration. Connections

to selected neurons are then ignored during forward- and back-propagation. At test

time, dropout is removed and the entire network is used for forward propagation.

This prevents neurons from becoming tied to any given input features and forces the

network as a whole to be able to generalize. Additionally, the authors also introduced

18

several data augmentation techniques to artificially expand their training data. First,

an image had a 50% chance of being selected for horizontal mirroring. A dog facing

left is still a dog even if it is facing right. Second, random cropping of the images

provided many variations of the same image. The input of the network was 228x228

pixels, and the dataset provided images that were 256x256. Rather than scaling

down images during training, the image was randomly cropped under the assumption

that any particular window was likely to still demonstrate that particular object.

During testing, 5 patches and their mirrors were extracted and the average result was

used to determine the network’s decision. The final data augmentation technique the

authors applied was random perturbations proportional to the eigenvalues of the RGB

channels of the image. This had the effect of changing the illumination of the image

without changing the subject of the image. The combination of these overlapping

pooling boundaries, dropout, and data augmentation techniques are credited with

reducing overfitting by a “substantial” amount, although dropout is said to have

doubled the number of training iterations before convergence [31].

Lastly, the authors also managed to implement their network and train it on a pair

of GPUs using Nvidia’s CUDA library. Neural networks are highly parallel because

the result at any particular neuron and its activation only depeneds on the previous

layer having been calculated. This means an entire layer can be calculated in parallel

so long as the previous layers have already been calculated. GPUs are well suited to

this task because they have a large number of cores and high memory bandwidth.

Research has shown that a parallel GPU implementations can be as much as two

orders of magnitude quicker to train in terms of wall clock time [47][12][30]. Given

that it took Krizhevsky et al almost a week to train the network, training would have

likely taken months on a CPU-only implementation.

The success of AlexNet has lead to increased interest in ConvNets. Coupled

19

with the introduction of Nvidia’s CUDA library for general purpose programming

on GPUs, ConvNets have advanced significantly in the past few years. Research in

this area has also been aided by the development of several new libraries designed

specifically for deep learning, each designed with their own philosophies and program-

ming languages. Berkeley Caffe was designed to separate architecture specification

from implementation [27]. Torch7 sought to implement a MATLAB-like interface

with GPU support in order to achieve performance while maintaining familiarity for

many academics [13]. Theano is Python-based compiler for mathematical expres-

sions that performs automatic symbolic differentiation with a focus on performance

[9]. Google’s TensorFlow was designed to scale across distributed and heterogeneous

systems [2]. A comparison of the libraries shows that not all implementations have

the same performance; however they all benefit significantly from using a GPU [5].

These libraries have enabled researchers to rapidly prototype and experiment with

ConvNets and deep learning in general.

Advances to AlexNet. Subsequent ILSCVRC competitions have lead

to advancements in the basic architecture of ConvNets. In 2013, Sermanet et al

demonstrated that ConvNets could be efficiently extended to perform localization

(image classification with a bounding box) and detection (localization applied to

multiple unique objects in a image) [45]. They dubbed their network OverFeat and

released it for use as a generic feature extractor (similar to SIFT or SURF features).

Later research has shown that these features are at least as effective as SIFT features

when used in a number of computer vision algorithms [44].

Other networks worth noting include VGG (from Oxford’s Visual Geometry Group)

[46]. VGG was the name of the model developed by Simonyan and Zisserman for the

2014 ILSCVRC competition. Their contribution was to measure the effect of adding

more convolutional layers. Whereas AlexNet had 8 weight layers, they tested models

20

that had between 11 and 19 layers. They also exclusively used 3x3 convolutional ker-

nels. In contrast, AlexNet used different sized kernels for each layer. Simonyan and

Zisserman demonstrated that adding depth to the model increased its performance

as the 19 layer model achieved the best overall accuracy.

The current leading model is known as GoogLeNet. It is a 22 layer model devel-

oped by Szegedy et al [48]. One key contribution Szegedy’s team made was the use

of the “inception module”. At each module, a 1x1, 3x3, and 5x5 convolution is ap-

plied as well as a 3x3 max pooling filter. These feature maps are then concatenated,

preserving local information at a range of resolutions. The other contribution was

their use of additional classifiers midway through the network during training. The

authors were concerned that the earlier layers of the network would train very slowly

due to the vanishing gradient problem [8]. In order to magnify the gradient, they

introduced two additional classifiers during training. When the training data reaches

this part of the network, it is passed forward to the next layer and the fully-connected

classifier portion. The error for that layer is then the sum of the error in the next layer

and the error from the classifier portion. During testing, these extra fully-connected

classifiers are dropped and only the result in the final softmax layer is considered. By

using an ensemble committee of GoogLeNet models, Szegedy et al achieved the best

result in the 2014 ILSCVRC competition.

2.2 Related Works in Transfer Learning for ConvNets

Transfer learning is the study of using data gained from one problem in machine

learning and applying it to another related, yet different, problem. With ConvNets,

there are two main ways to apply transfer learning. The first is to remove the softmax

layer of a trained network and use the raw output of the previous fully-connected layer

as a generic feature vector that describes a particular image. These features are then

21

used in a number of algorithms for visual problems. The second is to use the weights

learned in a network as the initialization for the same network to be trained on a

different dataset. This technique is sometimes known as parameter fine-tuning or

network surgery. The last weight layer is removed from the network (due to the fact

that the source and target datasets likely had a different number of output classes)

and reinitialized randomly. The network is then trained on the target dataset with

the hope that the weights learned in the earlier layers are still relevant for the target

task.

The next section discusses several papers that have made contributions in this

field. The first is “Rich feature hierarchies for accurate object detection and seman-

tic segmentation” which introduces the Regions with CNN Features algorithm and

discusses both parameter fine-tuning and using ConvNets as a fixed feature extrac-

tor [22]. “CNN Features off-the-shelf: an Outstanding Baseline for Recognition” and

“From Generic to Specific Deep Representations for Visual Recognition” discuss using

ConvNets as a fixed feature extractor and apply it to a number of computer vision

problems [44][4]. Finally, “How Transferable are Features in Deep Neural Networks”

exclusively discusses parameter fine-tuning and is most relevant to this thesis.

2.2.1 Regions With CNN features.

A number of computer vision algorithms rely on the input of engineered features to

perform their tasks. ConvNets are inherently designed to perform image classification

and have to be adapated to work in these tasks. One such task is object detection.

In this task, multiple objects may be present in the image and the algorithm is

responsible for identifying them and providing bounding boxes. Girshick et al note

that after the demonstration of AlexNet, many academics doubted that it would be

possible to extend ConvNets to other tasks such as object detection. Girshick et al

22

set out to test this hypothesis by applying ConvNets to the 2012 Pattern Analysis,

Statistical Modeling and Computational Learning Visual Object Classes (PASCAL

VOC) benchmark.

The authors proposed a three step system they dubbed Regions with CNN Fea-

tures (R-CNN): first, regions are proposed for analysis; second, features are generated

from each region using a ConvNet without the SoftMax classifier; third, these fea-

tures are used passed into class-specific Support Vector Machines (SVM) to label the

region. The authors note that R-CNN can work with a number of region proposal

methods, but they chose selective search to stay in line with previous work. The

ConvNet they used was the same architecture as AlexNet; however, they trained it

slightly differently. It was initially trained on the ImageNet dataset. After achieving

approximately the same results as Krizhevsky et al, they then applied parameter fine-

tuning to retrain the network on the 20 classes in PASCAL VOC. After fine-tuning

the ConvNet, they remove the SoftMax and use it to generate a 4096-length generic

feature vector. Lastly, they trained 21 SVM classifiers (20 classes + 1 rejection class)

to classify regions based on the ConvNet-generated features. Any overlapping regions

of the same class are then combined.

Girschick et al compare their results to the then-leading results on the benchmark.

The authors note that their algorithm is similar to the one presented by Uijlings et

al, which uses selective search to identify regions [50]. Uijlings et al then choose

one of four different algorithms that are all based on SIFT to generate features in

these regions. They then use SVMs to classify the region. This algorithm is identical

to R-CNN except for its method of generating features. This makes R-CNN an

excellent algorithm for comparing ConvNets with engineered features such as SIFT.

The metric used for measuring performance on object detection is commonly mean

average precision (mAP), which takes into account label and bounding box distance

23

from ground truth. In order to improve the mAP, the algorithm needs to correctly

label objects and provide a bounding box that matches the ground truth to some

degree. As the bounding box more closely matches the ground truth, the mAP

increases. Girshick et al achieve state of the art results of a mAP of 53.7%. This is

better than the results of Uijlings et al and the previous best mAP achieved of 35.1%

and 40.4%, respectively [50].

R-CNN demonstrated that ConvNets could successfully be used for other visual

problems outside simple image classification. The authors also claim to show that

parameter fine-tuning is an effective method for training large ConvNets on small

datasets. They are the first to note the value of fine-tuning for ConvNets. However,

they don’t rigorously test this claim. They merely report that by using ImageNet as a

supervised pretraining set, they were able to successfully fine-tune to the target task

of classifying PASCAL VOC images. It is particular noteworthy that they reduced

the learning rate during fine-tuning to prevent “clobbering the initialization” [22].

They do not report hard numbers or even state that they compare to any other

methods. The authors also fail to provide any reasoning as to why this is important

or necessary. The authors implicitly assume that features generated from a PASCAL

VOC classifier are more useful than features generated by an ImageNet classifier.

Though this seems to be an intuitive assumption given that the task is based on

PASCAL VOC classes and not ImageNet classes, they provide no rationale as to why

this may be true. This thesis explicitly evaluates the claim about clobbering the

initialization and identifying the best source task.

24

2.2.2 CNN Features off-the-shelf: an Astounding Baseline for Recog-

nition.

In recognition of the limited work done in transferring learning along the lines of

Girshick et al, Razavian et al sought to apply ConvNet features to a number of vision

problems [44]. Rather than focus on creating highly optimized algorithms, the goal

was to create the simplest algorithm possible to establish a baseline performance. In

general, the authors used the OverFeat network to generate features and then simply

passed these features to a linear SVM classifier [45]. The results showed that these

features were often competitive with the state of the art algorithms in that particular

dataset. The authors also showed that in many cases, they were able to surpass state

of the art results by augmenting this simple approach. The tasks they looked at

were image classification, fine-grained image classification, attribute detection, and

instance retrieval.

For image classification, the authors take the output of the first fully-connected

layer of OverFeat and use this as a generic 4096-length feature vector. They then train

a set of linear SVMs on these vectors. They also train a set of linear SVMs based

on the training data and augmented data gathered from cropping and rotating the

original training set. Using the 2007 PASCAL VOC image classification benchmark

and the MIT-67 scenes benchmark, they test their model. They also apply the same

methodology to the fine-grained imagery from the Caltech-UCSD Birds dataset and

the Oxford 102 flowers dataset. Both the simple model and the augmented model

beat the existing state of the art results for the PASCAL VOC benchmark. For

the MIT-67 benchmark, the simple model is competitive while the augmented model

beats the state of the art result. This result is repeated on the Oxford flowers dataset.

This result is almost repeated on the Caltech-UCSD Birds dataset, but the authors

also compare their results to that of a highly optimized algorithm for the dataset that

25

also used generic ConvNet features which achieves a better accuracy [17].

For attribute detection, the goal is to identify which nonexclusive attributes are

present in an image, e.g. whether the subject is male and/or is wearing glasses. The

authors use the same ConvNet and linear SVM architecture. The datasets are the

Humans in 3D (H3D) and University of Illinois at Urbana-Champaign 64 attribute

(UIUC64). For both datasets, the simple model achieved better than state of the art

results while the augmented model did even better.

Lastly, the authors applied instance retrieval. The objective is to take a given

image and find a set of similar images from a labeled set. To determine the similar-

ity, the authors use the Euclidean distance between the image in question and the

known images. They also augment their data by applying principal component anal-

ysis (PCA) to the features. This technique is applied to 5 different datasets. They

find that at worst, their method achieves comparable results to the state of the art

methods. At best, they slightly outperform it.

The major conclusion Razavian et al draw is that ConvNets are a powerful tool

that can be applied to many visual tools. For many tasks, a simple SVM classifier is

sufficient to match the performance of current leading algorithms. This suggests that

further specialization in each domain would likely lead to even better results.

There are three ways to extend the work done. The first is to identify additional

domains to which ConvNets could be applied. The second is to dive deeper into

individual domains and study ways to further specialize ConvNets for that particular

domain. Lastly, the authors can study the effect of the different source networks

applied to each task. The last extension is examined in this thesis.

26

2.2.3 From Generic to Specific Deep Representations for Visual Recog-

nition.

The researchers of the previous paper continued their work in a later paper on the

same subject. This time they systematically identify the factors that can affect the

transferability and then measure them against the tasks listed above. The factors they

identify are early stopping, network depth, network width, fine-tuning, dimension

reduction, and number of layers as shown in figure 7. They then exhaustively test

these factors against the same benchmarks from [44].

Figure 7. Factors that must be considered for transfer learning according to [4]

Network width refers to the number of neurons in a given layer. They use number

of free parameters as a proxy for network width, since different layers in ConvNets

have different numbers of neurons. Their results show networks smaller than AlexNet

(60 million parameters) transfer poorly. In general, OverFeat (150 million parameters)

transfers roughly as well as AlexNet. The main exception is in the case of image

retrieval, where OverFeat performs drastically worse on all benchmarks compared to

AlexNet.

Network depth refers to the number of layers in the network. In line with the

results demonstrated by VGG and GoogLeNet, the authors suspect that deeper net-

27

works are better able to extract information from the original image. They vary the

number of convolutional layers from 6 to 14 and test the results. The conclusion

is that as this number is increased, the performance on nearly all the datasets in-

creases” [4]. The only exception is one image retrieval task, which suffers from a

minor reduction in performance when depth is increased.

Early stopping is a method used to prevent a model from overfitting. Generally, a

validation set is used to test the performance. If performance against the validation

set begins to fall, the training process is stopped under the assumption that the model

is just overfitting. Contrary to what one might expect, early stopping is not beneficial

in any case. Every benchmark shows improvement with more training, though this

effect seems to stop after 200,000 training iterations.

The authors also examine the effect of the source task on the target. They do this

by also training a variant against the MIT Places dataset as well as a variant trained

on both datasets. The results show that the best result is generally comes from the

fourth model which concatenates the output of the two individual networks. The

only exception is fine-grained recognition does better when using only ImageNet as

the source. They suggest that this is because ImageNet has more labels which makes

the network more diverse. MIT Places has fewer classes and they are more visually

similar than some of the varieties found in ImageNet.

Lastly, they performed an experiment that extended on the R-CNN paper by Gir-

shick et al [22]. They found that adding additional images to the existing ImageNet

training set managed to provide modest gains over the results achieved by Girshick et

al. They conclude that even the million images in ImageNet aren’t enough to saturate

the learning capability of a ConvNet.

The work done is fairly exhaustive in most of the cases studied by the authors.

However, it still stands to be extended in a few ways. Although they did vary net-

28

work architecture parameters, they did not test the leading architecture GoogLeNet

[48]. Training GoogLeNet is notably different because it is exceptionally deep and

calculates the error at multiple points rather than just the end of the network. Sec-

ondly, the research done on source task could be expanded. The authors test two

different sources. ImageNet is a hodgepodge of classes, mixing fine-grained (e.g. over

100 breeds of dogs) and general classes (e.g. warplane is a single class). MIT Places

is all scenery data that has some degree of clutter depending on the place. Testing

source datasets is much harder to do exhaustively because there are so many different

datasets and factors that go into creating a dataset. This thesis provides research

into this area of research.

2.2.4 How Transferable are Features in Deep Neural Networks? .

In parallel with the work done by Azizpour et al is research done by Yosinski et

al. Noting that the filters learned in the first layer of different ConvNets always tend

to approximate Gabor filters and color blobs, Yosinski et al sought to understand

the transferability of layers as network depth increased [52]. They hypothesized that

earlier layers were more general and as depth increased later layers were more attuned

to specific features particular to the dataset. To measure this, they divided the 1000

classes of ImageNet data into two smaller datasets of 500 classes each. They trained

on one dataset and transferred to the other to measure the effect. They measured

two variables: the number of layers transferred and the effect of freezing learning in

the transferred layers.

The results reveal two interesting behaviors. The first is that they demonstrate

the effectiveness of transfer learning in ConvNets and show that transferring more

layers is more effective than fewer. However, even transferring one layer shows some

improvement. They also demonstrated the importance of continuing learning even

29

after transferring. The results show that freezing learning in transferred layers con-

sistently causes performance to decline. Most notably, the authors find that freezing

learning in earlier layers and re-initializing the later layers causes a tremendous drop

in performance (the case of transferring from a source task to a target task that is

the same). The authors dub this effect “fragile co-adaptation”. Backprop assumes

simultaneous changes to the entire network during updates. When this assumption,

is invalid, backprop is unable to recover the features that made it work in the first

place. This was an unexpected result.

Yosinski et al also devised an experiment to measure the effect of transfer learning

to a more distant task. ImageNet contains over 100 breeds of dogs, and the first

experiment split them roughly equally into the two datasets. In order to create a

split with more “distance”, the authors split the ImageNet dataset into two datasets

based on whether the class was man-made or natural. They state that more distance

decreases the less beneficial transfer learning is.

The biggest contribution from Yosinski et al was showing that transfer learning

is beneficial in general. It was previously assumed that it would only be beneficial

in the case of small target datasets, which ConvNets are prone to overfit. The data

strongly suggests that random initialization is a poor choice when transfer learning

is available.

The experiment measuring the effect of distance on transferability leave something

to be desired. ConvNets work based on visual information. A more distant task

should be more visually dissimilar. However, the authors present two datasets that

are categorically dissimilar, but not necessarily visually dissimilar. Consider the case

of lemon, tennis ball, and microwave, all of which are labels in the ImageNet dataset.

Visually, tennis ball is closer to lemon than microwave because of similar shape and

colors. However, Yosinski’s method considers microwaves to be more closer. At

30

best, it provides a rough approximation for distance. We improve on this work by

providing a dataset that groups imagery based on visual similarity rather than an

abstract categorization.

There exists a good deal of literature demonstrating the effectiveness of parameter

fine-tuning. However, there are still gaps in our understanding. One issue is that the

ImageNet dataset, which mixes both fine- and coarse-grained categories together is

usually used as the source dataset. Very little research has been done using anything

else as the source. This thesis seeks to gain insight into three questions regarding

parameter fine-tuning and fine-grained classification. How many layers should be

transferred, and how much learning should occur in the transferred layers? What

type of source task transfers the best? And finally, what effect does transfer learning

have on ensembles of classifiers?

31

III. Methodology

Chapter 1 of this thesis presented three research questions. Based on the literature

review, we expand some of the questions here. For reference, they are:

1. When transferring layers...

(a) How many layers should be transferred?

(b) What is the optimal learning strategy in transferred layers?

2. For fine-grained classification...

(a) Is learning a fine-grained dataset a better source task or a coarse-grained

dataset a better source task?

(b) Is learning a more distant dataset or a more visually similar dataset a

better source task?

(c) Does a larger training dataset reduce the effectiveness of parameter fine-

tuning?

3. Do ensembles of fine-tuned ConvNets outperform ensembles of randomly ini-

tialized ConvNets?

With these goals in mind, a dataset must be specified that has certain character-

istics in order to answer the above questions.

Dataset requirements. First, fine-grained classification must be de-

fined, especially with regards to coarse-grained classification. Fine-grained images

are images that are of the same class, but have some degree of differentiation. All

images in a fine-grained dataset should be visually similar. Ultimately, the separation

of classes within the fine-grained dataset are arbitrary. Consider the major class of

32

airplanes. This could be divided into fine-grained classifications in multiple ways.

One such division could be the name of plane, such as Boeing 737 vs. F-16. Another

possible division could be based on a characteristic of the plane, such as biplane

vs. monoplane. The important characteristic of fine-grained classification is that the

dataset is visually similar. The separates it from coarse-grained classification, which

compares two very different objects such as plane vs. flower.

Since the target task under consideration is fine-grained image classification, a

collection of labeled finely-grained images is necessary. In order to verify the effect

under study, multiple finely-grained datasets should be used to ensure that the effect

does not happen to be particular to a certain dataset. By aggregating different sets,

it is also possible to create a dataset of coarse-grained dataset. Every image is given a

major label and a minor label. The major label is the dataset to which it belongs; the

minor label is the fine-grained class in that particular class. For example, an image

could have a major label of plane and a minor label of F-16. The coarse-grained

dataset is images labeled by their major label. A fine-grained dataset is all images

that share a common major class but are labeled by their minor class. This allows

the dataset to address the question posed by 2(a).

By aggregating multiple fine-grained datasets, it is also possible to address the

question of distance. By training on different subsets of the aggregated dataset, a

measure of distance can be obtained. When the target task is fine-grained classifica-

tion of planes, for example, a network trained on planes and other objects is a closer

task than a network trained only on the other objects. This addresses question 2(b).

Lastly, there is some question on how the size of the available training data affects

the usefulness of parameter fine-tuning. There is speculation that large datasets do

not benefit from parameter fine-tuning because they have enough training data to

successfully learn a useful representation. If the aggregated datasets have a nonuni-

33

form amount of training data, it is possible to measure the usefulness of parameter

fine-tuning on larger datasets vs. smaller datasets. This is necessary for addressing

question 2(c).

The requirements for answering questions 1 and 3 are much less stringent. So if

a dataset meets the above requirements, it necessarily is suitable for answering all of

the questions posed earlier.

3.1 Fine-Grained Imagery Datasets

Overview. Data was gathered from a number of fine-grained datasets

available online. Table 1 shows an overview of the data gathered. There are 7 major

classes. They are vegetable, cat, flower, bird, sign, dog, and plane. The data is not

uniformly distributed. Every major class has a different number of images and minor

classes, and the imagery is not uniformly distributed among the minor classes. The

dataset is further broken down into mutually exclusive training and testing sets. The

split is 75%/25% training/testing. Training images are used to fit the models to.

Testing images are used to measure the Each major class if further divided into a

number of finely-grained minor classes. There are between 12 and 111 minor classes

in each major class and between 2392 images and 71947 images in each major class.

Table 1. A high-level overview of the dataset

Major Class Images Train Test Categories Mean Median
Vegetable 17562 13243 4409 24 735.5 800
Cat 2392 1795 597 12 199.3 200
Flower 8189 6180 2009 102 80.3 66
Bird 11788 8872 2916 200 58.9 60
Sign 5886 4424 1462 24 245.3 189
Dog 71947 53982 17965 111 648.2 800
Plane 17800 13350 4450 78 228.2 100

Total 135654 101846 33808 551 246.2 91

34

Figure 8. The distribution of the data presented by major class.

Figure 9. A sample of the signs used in the dataset. Plain English labels were not
provided with the dataset. From left to right: sign 021, sign 038, and sign 061.

35

Table 2. A comprehensive list of all the minor classes in the sign class.

Minor Images Train Test
sign 00001 137 103 34
sign 00007 247 186 61
sign 00013 129 97 32
sign 00017 262 197 65
sign 00018 200 150 50
sign 00019 394 296 98
sign 00021 88 66 22
sign 00022 436 327 109
sign 00028 176 132 44
sign 00031 149 112 37
sign 00032 738 554 184
sign 00035 214 161 53
sign 00037 129 97 32
sign 00038 495 372 123
sign 00039 295 222 73
sign 00040 290 218 72
sign 00041 159 120 39
sign 00045 158 119 39
sign 00047 178 134 44
sign 00053 223 168 55
sign 00054 166 125 41
sign 00056 128 96 32
sign 00057 119 90 29
sign 00061 376 282 94

36

Signs. Table 2 shows a breakdown of all the minor classes within the

major class of sign, and figure 9 shows a sample of some of the images. There are

5886 images spread across 24 minor classes with a mean of 245.25 images in each

class and a median of 189 images in each class. The data was taken from the KUL

Belgium Traffic Sign Classification benchmark [49].

The KUL Belgium Traffic Sign Classification is a collection of images of signs

taken around Belgium. Each image is labeled with the type of sign and the specific

location. The location data was stripped out and all signs of the same type were

combined. The images were provided only with a numerical label for the type rather

than an English description. Only signs with more than 80 images were kept. In the

end, this lead to 24 minor classes.

Figure 10. A sample of the vegetables used in the dataset. From left to right: black
beans, eggplant, and pumpkin.

Vegetables. Table 3 shows a breakdown of all the minor classes within

the major class of vegetable, and figure 10 shows a sample of some of the images.

There are 24 minor classes with a mean of 735.5 images in each class and a median

of 800 images in each class. The data was gathered from the ImageNet database

[49]. The ImageNet database uses automated methods for gathering imagery across

the internet in hundreds of thousands of categories. These images are then screened

to participants through Amazon Mechanical Turk to eliminate false positives. The

37

Table 3. A comprehensive list of the images in the vegetable class.

Minor Images Train Test
cayenne 730 548 182
cucumber 800 600 200
tomato 800 600 200
radish 800 600 200
carrot 800 600 200
fava 800 600 200
shallot 686 515 171
broccoli 800 600 200
pumpkin 800 600 200
black 515 387 128
asparagus 800 600 200
brussel sprouts 800 600 200
artichoke 771 579 192
cauliflower 800 600 200
spinach 748 561 187
bell 800 600 200
pinto 223 168 55
snow pea 800 600 200
kidney 726 545 181
mushroom 800 600 200
okra 800 600 200
leek 536 402 134
plantain 717 538 179
eggplant 800 600 200

38

URLs of the remaining images are made available for academic use. This served as

the source of images for the vegetable class.

Figure 11. A sample of the dogs used in the dataset. From left to right: Beagle, Dingo,
and Border Collie.

Dogs. Table 4 shows a breakdown of all the minor classes within the

major class of dog, and figure 11 shows a sample of some of the images. There are

111 minor classes with a mean of 648.2 images in each class and a median of 800

images in each class. It is the largest major class with a total of 71947 images and

has the most images per class.

Part of the dataset originated with the Stanford Dogs dataset for fine-grained

visual classification [28]. Originally, 20,000 images were presented with this dataset.

The dataset was then added to the ImageNet database and combined with images

using ImageNet’s standard methodology. ImageNet was the ultimate source for this

research.

Cats. Table 5 shows a breakdown of all the minor classes within the

major class of cat, and figure 12 shows a sample of some of the images. There are 12

minor classes with a mean of 199.3 and a median of 200 images per class. It is the

smallest major class with a total of 2392 images.

The dataset was provided as part of the Oxford Pets dataset from the Oxford

Visual Geometry Group [43]. The dataset provides a fine-grained set of cats and dogs

39

Table 4. A subset of the minor classes in the dog class. See Appendix A for the full
table.

Minor Images Train Test
Airedale 745 559 186
toy poodle 800 600 200
border terrier 800 600 200
tibetan terrier 460 345 115
soft-coated terrier 800 600 200
curly-coated retriever 238 179 59
australian terrier 650 488 162
griffon 122 92 30
bullterrier 800 600 200
standard poodle 800 600 200

Figure 12. A sample of the cats used in the dataset. From left to right: Bengal,
Siamese, and Persian.

Table 5. A comprehensive list of the minor classes in the cat class.

Minor Images Train Test
Siamese 200 150 50
Egyptian Mau 194 146 48
Birman 200 150 50
Russian Blue 200 150 50
Ragdoll 200 150 50
Bombay 200 150 50
Sphynx 200 150 50
British Shorthair 200 150 50
Maine Coon 200 150 50
Persian 200 150 50
Abyssinian 198 149 49
Bengal 200 150 50

40

gather from a social network for pet owners and Flickr image groups. The images

were then checked manually by human experts.

Figure 13. A sample of the flowers used in the dataset. From left to right: Azalea,
Wild Pansy, and Japanese Anemone.

Flowers. Table 6 shows a breakdown of all the minor classes within the

major class of flower, and figure 13 shows a sample of some of the images. There are

102 minor classes with a mean of 80.3 and a median of 66 images per class. In total,

the major class has 8189 images.

The data was provided by the Visual Geometry Group as well. It is known as the

Oxford Flowers dataset [42]. The dataset is particularly difficult because multiple

characteristics must be taken into account to fully identify the flower. For example,

some flowers have identical shapes but different colors, while others have identical

colors but identical shapes.

Birds. Table 7 shows a breakdown of all the minor classes within the

major class of flower, and figure 14 shows a sample of some of the images. There are

200 minor classes with a mean of 58.9 and a median of 60 images per class. There

are a total of 11788 images

The dataset was generated collaboratively between Cal-Tech and the University

of California San Diego and is known as the Caltech-UCSD Birds-200 or CUBS-200

41

Table 6. A subset of the minor classes in the flower class. See Appendix A for the full
table.

Minor Images Train Test
bearded iris 54 41 13
hard-leaved pocket orchid 60 45 15
purple coneflower 85 64 21
bee balm 66 50 16
foxglove 162 122 40
poinsettia 93 70 23
carnation 52 39 13
japanese anemone 55 42 13
moon orchid 40 30 10
alpine sea holly 43 33 10

Figure 14. A sample of the birds used in the dataset. From left to right: Cardinal,
American crow, and Carolina Wren.

Table 7. A subset of the minor classes in the bird class. See Appendix A for the full
table.

Minor Images Train Test
Lazuli Bunting 58 44 14
Green tailed Towhee 60 45 15
Heermann Gull 60 45 15
Ovenbird 60 45 15
Yellow headed Blackbird 56 42 14
Crested Auklet 44 33 11
Horned Lark 60 45 15
Groove billed Ani 60 45 15
Red breasted Merganser 60 45 15
Barn Swallow 60 45 15

42

dataset [51]. It is one of the more difficult datasets because there is less training data

per class.

Figure 15. A sample of the planes used in the dataset. From left to right: A-10,
Spitfire, and Boeing 737.

Planes. Table 8 shows a breakdown of all the minor classes within the

major class of flower, and figure 15 shows a sample of some of the images. There are

78 minor classes with a mean of 228.2 and a median of 100 images per class. There

are a total of 17800 images.

The dataset was aggregated from two other datasets. The first is another fine-

grained dataset from the Oxford Visual Geometry Group. It is known as the Fine-

grained Visual Classification of Aircraft dataset (FGVC-Aircraft) [39]. A number of

images are provided and labeled with the manufacturer, family, variant, and model.

For example, the Boeing 737-200J has a manufacturer of Boeing, a family of 737,

a variant of 200 and model of J. Different models of the same variant are often

visually indistinguishable. For the purpose of this research, all variants of a family

are lumped together at the family level in order to prevent the creation of extremely

small classes. It was supplemented with data from a non-public dataset of 10 Air

Force aircraft created by Robert Mash [40]. Some minor classes of aircraft have data

from both Mash and FGVC-Aircraft.

43

Table 8. A subset of the minor classes in the plane class. See Appendix A for the full
table.

Minor Images Train Test
CV2 800 600 200
DC-6 100 75 25
C130 800 600 200
CRJ-200 100 75 25
F22 800 600 200
A300 100 75 25
BAE-146 200 150 50
Boeing 757 200 150 50
Boeing 717 100 75 25
CRJ-700 200 150 50

3.2 Experimental Design

Before the setup of the experiment is described, some terminology must be defined.

There are three types of ConvNets defined based on the training data used and the

output. The first is a generalist network. It classifies images based on their major

class. The second is referred to as a high-fan network. It performs fine-grained

classification on all of the datasets. Since it necessarily has more outputs than the

output of the generalist network, it has a much higher fan-out; hence the name ”high-

fan”. Since generalist and high-fan networks train on data from multiple fine-grained

datasets, they are also called superset networks. Lastly, a specialist network is a

ConvNet that only trains on one major class and outputs the minor classes for that

particular major class.

For the sake of an example, consider the variations with respect to the planes

dataset. If the dataset is the entirety of the data and is classified at the major class

level (7 labels), it is referred to as the generalist network. If the dataset is the entirety

of the data and is classified at the minor class level (551 labels), it is referred to as

the high-fan network. If the dataset is the entirety of the data except for the planes

subset and is classified at the major level (6 labels), it is referred to as the generalist

44

without planes network. If the dataset is the entirety of the data except for the planes

subset and is classified at the minor level (473 labels), it is referred to as the high-fan

without planes network. Lastly, there is a planes specialist network which only uses

the planes dataset and classifies it at the minor level (78 labels). The planes specialist

network can have one of 5 initializations for its weights. The first is random Gaussian

noise and is referred to as a “scratch” initialization. The next four come from the

aforementioned generalist and high-fan networks and are referred to by the name of

the network it comes from. For example, a plane specialist network may be referred

to as the “high-fan without planes” specialist network, meaning it was initialized from

the weights of the high-fan network that was trained on the full dataset minus the

planes subset.

With the goals of this research in mind, the dataset described, and the terminology

used throughout defined, the design of the experiment may be explained. In total,

four experiments regarding parameter fine-tuning are performed. The first attempts

to recreate some of the work done by Yosinski et al and demonstrate the specificity

of features in learned layers [52]. Next, we examine the effect of varying the learning

rate in the learned layers between 0 and 1. Third, we measure the transferability of

different sources of data to each individual fine-grained dataset. Lastly, we compare

an ensemble of fine-tuned networks to an ensemble of randomly initialized networks.

3.2.1 Constant Parameters.

There are many parameters that can be adjusted when it comes to training Con-

vNets. Unless otherwise noted, the parameters described below are used across all

experiments.

The network architecture to be used for this experiment is the same one as in

AlexNet. While other architectures have been used to achieve better results on the

45

ILVSRC challenge (most notably GoogLeNet [48]), AlexNet is used for several reasons.

First, it is a well known architecture and has become a standard architecture for

experiments on ConvNets themselves [52]. Second, even with high-powered GPUs,

training a ConvNet takes days, and more complicated models take longer (the authors

of VGG reported that training took 2-3 weeks on similar hardware [46]). Given the

number of ConvNets that need to be trained for this experiment, time is a nontrivial

factor.

AlexNet takes a 227x227 RGB image as its input. The first layer contains 96

11x11 convolutional kernels with a stride of 4. The output is then passed through a

ReLU activation. Max pooling with a 3x3 window and a stride of 2 is then used to

downsample. The next convolutional layer uses 256 5x5 kernels with a stride of 1.

This is also followed by a ReLU activation and another identical pooling layer. The

third convolutional layer uses 384 3x3 kernels. It is followed by another ReLU but no

pooling. The fourth convolutional layer also contains 384 3x3 kernels and is followed

by a ReLU activation and no pooling. The final convolutional layer contains 256 3x3

kernels. It is followed by a ReLU activation and 3x3 max pooling with a stride of 2.

The output is then fed into the fully-connected artificial neural network. The first

hidden layer has 4096 neurons and also uses the ReLU activation. The second hidden

layer is identical. Lastly, the output layer has an output equal to the number of labels

for the particular dataset in question (1000 in the case of the original AlexNet [31]).

A softmax function is applied to this function in order to generate the probability

distribution of all possible labels. During random initialization, weights in the fully

connected and convolutional layers are sampled from a Gaussian distribution with a

mean of 0 and a standard deviation of .05. Dropout with a probability of .5 is applied

to the fully-connected layers.

There still remains a number of network hyperparameters to be defined. Many of

46

these hyperparameters were chosen by experimenting until the network began to train

effectively. Large minibatches can lead to slow convergence while smaller minibatches

lead to suboptimal convergence. Minibatch size was set to 256. The learn rate was

initially set to .001. It was reduced by half every 25,000 training iterations. This

learning rate schedule was used for every network and is global unless otherwise

noted. Every network is trained for 200,000 iterations. Most networks converged to

an optimal solution in less than 100,000 training iterations and then began to overfit;

however, for the sake of consistency and thoroughness, all networks were trained for

200,000 iterations. Training consisted of 100 iterations followed by a complete test

against the entire validation set. The overall accuracy during each test was saved

in order to find the ”best” model. When a network’s accuracy is reported, it is the

model that had the best accuracy on the validation set. However, the best model was

never used for transferring. The model saved at 200,000 iterations was always the

source model. This is in line with the research done by Azizpour et al, which found

that early stopping was less beneficial than overfitting [4]

All experiments were done using Berkeley Caffe. Caffe was chosen for several

reasons. First, it supports GPU-accelerated training which makes research on this

scale feasible. It also makes it simple to transfer learned weights. Lastly, it is very

popular and well-supported by the community. It is expected that the same results

would be achieved regardless of deep learning framework used. The main difference

is interface and underlying implementation, not algorithm.

A sample of the code is used shown in appendix B. The code shown is not ex-

haustive and is specific to our system due to its use of absolute file paths. Every

network trained requires a number of minor changes to the basic template provided.

However, anyone familiar with Caffe and Python should be able to recreate our work

on a dataset of their choosing with little difficulty.

47

3.2.2 Determining Specificity of Features.

The goal is to determine how transferable the knowledge of a ConvNet is. This

experiment recreates some of the work done by Yosinski to validate his results and

our approach. To do this, we transfer the layers one by one to a new task but do

not allow learning in the transferred layers. This allows us to isolate the previous

knowledge and analyze how effective it is at a different task.

The generalist superset network is used as the source task. Then a variable number

of layers between 1 and 7 from the high-fan network are to a new network. The layers

not transferred are initialized randomly. We effectively halting learning in transferred

layers by setting the learning rate to 0 in these layers only. The remaining weight

layers are trained as usual. To serve as a baseline comparison, we also include a scratch

network with no transferred layers. According to Yosinski et al, transferring the

first and second layers has little effect compared to an entirely random initialization.

However, as the number of layers transferred increases, the accuracy begins to drop

due to the specificity of features learned on the earlier dataset. These features are

only useful on the target dataset and the inability to adapt them due to the frozen

learning rate has a negative effect on the target task. The target task in this case is

the plane subset. Due to time constraints, it was not possible to test this exhaustively

across all subsets.

3.2.3 Optimizing Learning Rate.

Having learned the effect of the weights with no adjustment, we seek to study

the effect of the rate of learning in transferred layers. It has been suggested that

the learning rate in transferred layers should be reduced in order to not “clobber the

learning” done previously [22]. However, this has never been tested empirically and

is just an intuitive assumption. The next experiment aims to study this.

48

All seven layers are transferred from the generalist network and then retrained

using a different learning rate multiplier. The final eighth layer always has a learning

rate multiplier of 1 because it was not transferred. This multiplier ranges from 0

to 1 in increments of .2. A multiplier of 0 represents a frozen transferred layer and

a multiplier of 1 represents transferring with full ”clobbering” enabled. This will

allow the effect of learning rate in transferred layers to be measured. Once again,

the source task is the generalist superset network and the target task is the specialist

plane network. The scratch network also serves as the baseline comparison. Due to

time constraints, it was not possible to test this exhaustively across all subsets.

3.2.4 Measuring Effect of Source Task on Target Task.

The optimal learn rate for transferring learned weights having been established, we

next move on to analyzing the effect of different source tasks for the target task of fine-

grained image classification. Unlike the previous experiments, this one is exhaustive

across the entire dataset.

To measure the effect of transferring from different source tasks, we train a spe-

cialist network on each fine-grained dataset. However, this is done with 5 different

initializations. The first is random initialization. This represents no transfer learn-

ing and serves as a control. The next two initializations used the weights from the

high-fan and generalist superset networks as the initialization. This allows us to com-

pare whether features learned in general datasets are more transferable than features

learned in more specific datasets. Lastly, there are two more initializations. They

come from high-fan and generalist networks trained on the entire superset except for

the major class targeted by the specialist network in question. These are more distant

source tasks compared to the high-fan and generalist network trained on the entire

dataset. This allows us to measure the effect of distance on transferability. This

49

experiment is performed across all seven major classes. In total, 51 networks are

trained for this experiment.

3.2.5 Comparing Ensemble Networks.

For the final experiment, we analyze the effect of transfer learning on ensemble

networks. Fine-tuned ConvNets tend to outperform randomly initialized ConvNets.

Ensembles of ConvNets tend to outperform individual ConvNets. This begs the

question: do ensembles of fine-tuned ConvNets outperform ensembles of randomly

initialized ConvNets?

For this, we compare the accuracy of an ensemble of four networks initialized from

the different source tasks listed in the previous experiment to an ensemble of four net-

works initialized randomly. Since fine-tuned networks tend to outperform randomly

initialized networks, we expect an ensemble of fine-tuned networks to outperform an

ensemble of randomly initialized networks. Due to time constraints, the only dataset

tested is the planes dataset. Four separate ConvNets are randomly initialized and

trained per usual to serve as the first ensemble. The second ensemble is made up of

the different initializations.

Evaluation Methods. The most important metric is overall accuracy. This

is the number of correctly identified images divided by the total number of images.

The top-1 error rate is also presented. This is the error rate in the class with the

lowest overall accuracy. It is common to report this metric as well [31][46][48].

For each network, the confusion matrix of the best model trained (as determined

by the accuracy on the validation set) is shown alongside a graph of the accuracy

for each training iteration. This provides a visual way to compare networks and can

sometimes reveal trends that other metrics don’t. Each row of pixels in the confusion

matrix shows how often a particular class appeared. Each column shows how often

50

a particular class was guessed by the network. Correct guesses are located on the

diagonal. A dark blue pixel indicates that a guess of that type was made 0% of the

time for the class represented by that row. A yellow pixel indicates a rate of 50%.

A dark red pixel indicates a rate of 100%. An ideal network that correctly classifies

every image would be dark red along the diagonal and dark blue everywhere else.

A graph showing the overall accuracy for every 100 training iterations is also

shown. This is to give the reader a sense of how transfer learning affects the conver-

gence of a network with transfer learning.

In the third experiment, we also examine the overall error reduction rate as a way

to directly compare networks trained on different datasets. For example, consider a

fine-tuned network with an overall accuracy of 75% and a scratch network with an

overall accuracy of 50%. The error reduction rate would 50% since it eliminated half

the errors in the scratch network.

In order to get a consolidated view of the results in the third experiment, two

approaches were taken. The first is to look at the number of “winners” for each type

of network. Table 11 shows this result. A winner is considered the top-performing

network for that particular dataset. For example, the highest-performing source for

the planes dataset is the generalist network. However, it is not a statistically sig-

nificant win for the generalist network, so it is not considered a win in the second

row. The third row tallies a win for all networks that were within the margin of

error of the winning network. So for the planes dataset, both the generalist and the

generalist-without networks earn a win in the third row.

The second approach is to measure the error reduction rate and use it as a nor-

malizing factor to compare the results from different datasets. This is defined as

ReductionRate =
1 − (ScratchErrors− TransferErrors)

ScratchErrors
(9)

51

where scratch errors refers to the number of errors made by the scratch network

and transfer errors refers to the number of errors made by each of the fine-tuned

networks. Consider a network that achieves an accuracy of 75%, and a second that

achieves an accuracy of 80%. The second network eliminated one fifth of the errors

from the first network and therefore achieved a 20% reduction in error rate. We apply

this method to the entire dataset to normalize the results against the scratch network.

Taken together, these experiments should answer the questions presented at the

beginning of this chapter. The first two experiments attempt to answer the first

question. The next experiment addresses questions two, three, and four by varying

the source task on a set of target tasks. Lastly, the final experiment directly addresses

the last question. The results of these experiments are presented in the next chapter.

52

IV. Results

This chapter will now present the results of the experiments described in chapter

three. The specificity of features experiment is performed first, followed by the at-

tempt to find the optimal learn rate. Next, the experiment to identify the best source

task is performed. Lastly, the effect on ensembles is studied.

4.1 Determining Specificity of Features

The first set of networks tests the effect of fine-tuning as the number of layers

transferred increases. The source network was the the superset generalist network.

The target dataset is the planes subset. Learning is frozen in the transferred layers.

Figure 16. The results of the 1-layer network. Left: The confusion matrix generated
by the best model with only 1-layer transferred. Right: The accuracy on the test set
over training.

1-Layer. Figure 16 shows the test set accuracy vs. training iterations.

The highest overall accuracy achieved was 71.326% after 33300 training iterations.

The top-1 error rate of this model was 72%. Figure 16 also shows the confusion

matrix.

53

Figure 17. The results of the 2-layer network. Left: The confusion matrix generated
by the best model with only 2-layers transferred. Right: The accuracy on the test set
over training.

2-Layer. Figure 17 shows the test set accuracy vs. training iterations.

The highest overall accuracy achieved was 71.371% after 119100 training iterations.

The top-1 error rate of this model was 76%. Figure 17 also shows the confusion

matrix.

Figure 18. The results of the 3-layer network. Left: The confusion matrix generated
by the best model with only 3-layers transferred. Right: The accuracy on the test set
over training.

54

3-Layer. Figure 18 shows the test set accuracy vs. training iterations.

The highest overall accuracy achieved was 69.191% after 67300 training iterations.

The top-1 error rate of this model was 80%. Figure 18 also shows the confusion

matrix.

Figure 19. The results of the 4-layer network. Left: The confusion matrix generated
by the best model with only 4-layers transferred. Right: The accuracy on the test set
over training.

4-Layer. Figure 19 shows the test set accuracy vs. training iterations.

The highest overall accuracy achieved was 68.202% after 109600 training iterations.

The top-1 error rate of this model was 84%. Figure 19 also shows the confusion

matrix.

55

Figure 20. The results of the 5-layer network. Left: The confusion matrix generated
by the best model with only 5-layers transferred. Right: The accuracy on the test set
over training.

5-Layer. Figure 20 shows the test set accuracy vs. training iterations.

The highest overall accuracy achieved was 66.719% after 115800 training iterations.

The top-1 error rate of this model was 88%. Figure 20 also shows the confusion

matrix.

Figure 21. The results of the 6-layer network. Left: The confusion matrix generated
by the best model with only 6-layers transferred. Right: The accuracy on the test set
over training.

56

6-Layer. Figure 21 shows the test set accuracy vs. training iterations.

The highest overall accuracy achieved was 55.281% after 88200 training iterations.

The top-1 error rate of this model was 96%. Figure 21 also shows the confusion

matrix.

Figure 22. The results of the 7-layer network. Left: The confusion matrix generated
by the best model with only 7-layers transferred. Right: The accuracy on the test set
over training.

7-Layer. Figure 22 shows the test set accuracy vs. training iterations.

The highest overall accuracy achieved was 18.584% after 125000 training iterations.

The top-1 error rate of this model was 100%. Figure 22 also shows the confusion ma-

trix. The confusion matrix shows several vertical lines, including one very prominent

one. These lines correspond to classes that have the most training data relative to

the other classes in the dataset.

57

Figure 23. The results of all the layer-wise networks. Left: The performance of all the
networks on one figure. Right: The best accuracy of each network.

Figure 82 shows the test results of all of the above networks on the same plot. To

serve as a control, a network with no learned layers is shown for reference as well.

See 72 for a more detailed view of it. The best network is 2-layers transferred, which

performs marginally better than 1-layer transferred, although it had a worse top-1

error rate. Transferring up to two layers provided The figure clearly shows that as

the number of layers transferred increases, the performance drops. There is little

difference between each layer until the 6th layer and a drastic drop between the 6th

and 7th layer. It is worth noting that the 5th layer is the last convolutional layer and

that the 6th and 7th layers are fully-connected layers.

A difference of .61% accuracy is is considered statistically significant with 95%

confidence for this dataset. Some of these layers have overlapping interval. The

scratch network overlaps with the first three layers. Layers one and two over lap with

each other. However, layers one and two do not overlap with layer three. Layer three

and four overlap. Beyond this, all other results are considered statistically significant.

This trend matches the results found by Yosinksi et al [52].

58

4.2 Optimizing Learn Rate

This experiment tests the effect of varying the learning rate in the transferred

layers. Normally, all layers are trained at the same rate governed by a global learn-

ing rate. For this experiment, a multiplier ranging from 0 to 1 in increments of .2

was applied to the global learning rate in the transferred layers. All 7 layers were

transferred from the generalist superset network and the target task was the planes

subset.

Frozen learning. A new network was not trained for this parameter. It

is the same network as the 7-layer network discussed above. For reference, the results

are repeated here. Figure 22 shows the test set accuracy vs. training iterations. The

highest overall accuracy achieved was 18.584% after 125000 training iterations. The

top-1 error rate of this model was 100%. Figure 22 also shows the confusion matrix.

Figure 24. The result of the network with a .2 multiplier. Left: The performance of all
the layer-wise networks on one figure based on their learn rate multiplier. Right: The
best accuracy of each network.

59

.2 multiplier. Figure 24 shows the test set accuracy vs. training it-

erations. The highest overall accuracy achieved was 73.034% after 49700 training

iterations. The top-1 error rate of this model was 68%. Figure 24 also shows the

confusion matrix.

Figure 25. The result of the network with a .4 multiplier. Left: The confusion matrix
generated by the best model trained with a .4 multiplier in the learned layers. Right:
The accuracy on the test set over training.

.4 multiplier. Figure 25 shows the test set accuracy vs. training it-

erations. The highest overall accuracy achieved was 74.405% after 41600 training

iterations. The top-1 error rate of this model was 68%. Figure 25 also shows the

confusion matrix.

60

Figure 26. The result of the network with a .6 multiplier. Left: The confusion matrix
generated by the best model trained with a .6 multiplier in the learned layers. Right:
The best accuracy of each network.

.6 multiplier. Figure 25 shows the test set accuracy vs. training it-

erations. The highest overall accuracy achieved was 75.056% after 30100 training

iterations. The top-1 error rate of this model was 76%. Figure 26 also shows the

confusion matrix.

Figure 27. The result of the network with a .8 multiplier. Left: The confusion matrix
generated by the best model trained with a .8 multiplier in the learned layers. Right:
The best accuracy of each network.

61

.8 multiplier. Figure 27 shows the test set accuracy vs. training it-

erations. The highest overall accuracy achieved was 75.146% after 31200 training

iterations. The top-1 error rate of this model was 72%. Figure 27 also shows the

confusion matrix.

Figure 28. Results from the plane generalist network. Left: The confusion matrix
generated by the best model for plane with initialization from the generalist superset
network. Right: The accuracy on the test set over training.

Global learning rate. A network with no multiplier in the learned layers

is one that uses the global learning rate throughout. This is the same as the generalist

plane network in third experiment. Figure 73 shows the test set accuracy vs. training

iterations. The highest overall accuracy achieved was 75.933% after 30600 training

iterations. The top-1 error rate of this model was 72%. Figure 73 also shows the

confusion matrix.

62

Figure 29. The combined results of all the networks with different learning rate mul-
tipliers. Left: The performance of all the networks on one figure based on their learn
rate multiplier. Right: The best accuracy of each network.

Figure 83 shows the test set accuracy vs. training iterations for all of the above but

only shows the first 100000 training iterations for clarity. The results show that as the

learn rate multiplier approaches 1, the performance improves. A difference of .61%

accuracy is considered statistically significant with 95% confidence. The difference

between a .6 and .8 multiplier was not statistically significant; however, the difference

between all other increments was statistically significant.

4.3 Measuring Effect of Source Task on Target Task

Next, we will evaluate the effect of different source tasks on the target task of fine-

grained classification for each dataset detailed in chapter three. For each category in

the dataset, five different initializations are tested and evaluated. First, the random

or “scratch” initialization of a particular specialist network is shown. It serves as the

control and baseline for that category. Then the results from the generalist and high-

fan specialist networks are shown. Lastly, the results from the generalist and high-fan

superset specialist networks without the category in question are shown. Lastly, the

63

combined results of all the different initializations are shown for easy comparison.

The results are presented in the same format as before. For each network trained,

a confusion matrix is presented from the best model as well as a figure showing the

accuracy over time. Some figures use “-W” as a shorthand for the superset network

trained on the entire dataset without the particular subset in question. For example,

the plane specialist network initialized from the weights of the generalist superset

network without planes would be referred to as “generalist-without” or “generalist-

w”.

4.3.1 Signs.

Figure 30. Results from the sign scratch network. Left: The confusion matrix generated
by the best model for sign with random initialization. Right: The accuracy on the test
set over training.

Scratch initialization. Figure 30 shows the test set accuracy vs. train-

ing iterations with random initialization. The highest overall accuracy achieved was

97.743% after 16000 training iterations. The top-1 error rate of this model was

20.513%.

64

Figure 31. Results from the sign generalist network. Left: The confusion matrix
generated by the best model for sign with initialization from the generalist superset
network. Right: The accuracy on the test set over training.

Generalist initialization. Figure 31 shows the test set accuracy vs.

training iterations with initialization from the generalist network. The highest overall

accuracy achieved was 98.153% after 44200 training iterations. The top-1 error rate

of this model was 25.641%. Compared to random initialization, the overall accuracy

is higher by .41% and the top-1 error rate is higher by 5.128. As can be seen in the

confusion matrix in figure 31, almost all of the errors are located in a single class

65

Figure 32. Results from the sign high-fan network. Left: The confusion matrix gener-
ated by the best model for sign with initialization from the high-fan superset network.
Right: The accuracy on the test set over training.

High-Fan initialization. Figure 32 shows the test set accuracy vs. train-

ing iterations with initialization from the high-fan network. The highest overall ac-

curacy achieved was 98.974% after 61800 training iterations. The top-1 error rate of

this model was 5.128%. Compared to random initialization, the overall accuracy is

1.231% high and the top-1 error rate is 15.89% lower.

66

Figure 33. Results from the sign generalist-without network. Left: The confusion
matrix generated by the best model for sign with initialization from the generalist
superset network without sign data. Right: The accuracy on the test set over training.

Generalist Without Signs Initialization. Figure 33 shows the test set

accuracy vs. training iterations with initialization from the more distant generalist

without signs network. The highest overall accuracy achieved was 99.111% after

11400 training iterations. The top-1 error rate of this model was 5.128%. Compared

to random initialization, the overall accuracy increased by 1.368% and the top-1 error

rate is lower by 15.89%.

67

Figure 34. Results from the sign high-fan-without network. Left: The confusion matrix
generated by the best model for sign with initialization from the high-fan superset
network without sign data. Right: The accuracy on the test set over training.

High-Fan Without Signs Initialization. Figure 34 shows the test set

accuracy vs. training iterations with initialization from the more distant high-fan

without signs network. The highest overall accuracy achieved was 98.974% after

31000 training iterations. The top-1 error rate of this model was 4.545%. Compared

to random initialization, the overall accuracy increased by 1.231% and the top-1 error

rate is lower by 15.968%.

68

Figure 35. The performance of all sign networks on one figure.

Figure 36. The best accuracy of all sign networks on one figure.

69

Figures 35 and 36 show the overall results for the sign dataset. In all cases,

transfer learning improved the performance over the random initialization. The best

source was the more distant generalist without signs superset network, which had

the greatest increase in overall accuracy and the greatest reduction in the top-1 error

rate of 99.111% and 5.128%, respectively. It also converged the fastest in only 11400

training iterations. All other transferred networks took longer to converge than the

scratch network which took 16000 training iterations. It is also worth noting that

the class of the top-1 error rate was the same for all networks except for the high-fan

without signs initialization

It is worth noting that 95% confidence in statistical significance requires a differ-

ences of 2.4%. All of the models fall within this margin. A larger dataset is needed

to overcome this uncertainty.

4.3.2 Vegetables.

Figure 37. Results from the vegetable scratch network. Left: The confusion matrix
generated by the best model for vegetable with random initialization. Right: The
accuracy on the test set over training.

70

Scratch Initialization. Figure 37 shows the test set accuracy vs. train-

ing iterations with random initialization. The highest overall accuracy achieved was

41.071% after 114400 training iterations. The top-1 error rate of this model was 86%.

Figure 38. Results from the vegetable generalist network. Left: The confusion ma-
trix generated by the best model for vegetable with initialization from the generalist
superset network. Right: The accuracy on the test set over training.

Generalist Initialization. Figure 38 shows the test set accuracy vs.

training iterations with initialization from the generalist network. The highest overall

accuracy achieved was 53.621% after 159400 training iterations. The top-1 error rate

of this model was 83.5%. Compared to random initialization, the overall accuracy

increased by 12.551% and the top-1 error rate was reduced by 2.5%.

71

Figure 39. Results from the vegetable high-fan network. Left: The confusion matrix
generated by the best model for vegetable with initialization from the high-fan superset
network. Right: The accuracy on the test set over training.

High-Fan Initialization. Figure 39 shows the test set accuracy vs. train-

ing iterations with initialization from the high-fan network. The highest overall ac-

curacy achieved was 54.077% after 169400 training iterations. The top-1 error rate

of this model was 77.665%. Compared to random initialization, the overall accuracy

increased by 13.007% and the top-1 error rate was reduced by 8.335%

72

Figure 40. Results from the vegetable generalist-without network. Left: The confusion
matrix generated by the best model for vegetable with initialization from the generalist
superset network without vegetable data. Right: The accuracy on the test set over
training.

Generalist Without Vegetable Initialization. Figure 40 shows the

test set accuracy vs. training iterations with initialization from the generalist without

vegetables network. The highest overall accuracy achieved was 53.166% after 149000

training iterations. The top-1 error rate of this model was 80.203%. Compared to

random initialization, the overall accuracy increased by 12.096% and the top-1 error

rate was reduced by 5.797%.

73

Figure 41. Results from the vegetable high-fan-without network. Left: The confusion
matrix generated by the best model for vegetable with initialization from the high-fan
superset network without vegetable data. Right: The accuracy on the test set over
training.

High-Fan Without Vegetable Initialization. Figure 41 shows the

test set accuracy vs. training iterations with initialization from the high-fan without

vegetables network. The highest overall accuracy achieved was 54.237% after 93000

training iterations. The top-1 error rate of this model was 81.5%. Compared to

random initialization, the overall accuracy increased by 13.167% and the top-1 error

rate was reduced by 4.5%.

74

Figure 42. The performance of all vegetable networks on one figure.

Figure 43. The best accuracy of all vegetable networks on one figure.

75

Figures 42 and 43 show the overall results for the vegetable dataset. In all cases,

transfer learning improved the performance over the random initialization. The best

source was the more distant high-fan without vegetables superset network, which had

the greatest increase in overall accuracy to 54.237%. However, the high-fan superset

network was the best source for reducing the top-1 error rate. It had a top-1 error

rate of 77.650% compared to the scratch initialization network’s top-1 error rate of

86%. The high-fan without vegetable network also converged the fastest at 93000

training iterations. All other transferred networks took longer to converge than the

scratch network which took 114400 training iterations. The class responsible for the

top-1 error rate was different for each network.

A difference of .61% is considered statistically significant with 95% confidence.

All of the transferred networks are within the margin of error except for the scratch

network.

4.3.3 Dogs.

Figure 44. Results from the dog scratch network. Left: The confusion matrix generated
by the best model for dog with random initialization. Right: The accuracy on the test
set over training.

76

Scratch Initialization. Figure 44 shows the test set accuracy vs. train-

ing iterations with random initialization. The highest overall accuracy achieved was

37.885% after 134200 training iterations. The top-1 error rate of this model was 90%.

Figure 45. Results from the dog generalist network. Left: The confusion matrix
generated by the best model for dog with initialization from the generalist superset
network. Right: The accuracy on the test set over training.

Generalist Initialization. Figure 45 shows the test set accuracy vs.

training iterations with initialization from the generalist network. The highest overall

accuracy achieved was 39.568% after 158400 training iterations. The top-1 error rate

of this model was 86%. Compared to random initialization, the overall accuracy

increased by 1.684% and the top-1 error rate was reduced by 4%.

77

Figure 46. Results from the dog high-fan network. Left: The confusion matrix gener-
ated by the best model for dog with initialization from the high-fan superset network.
Right: The accuracy on the test set over training.

High-Fan Initialization. Figure 46 shows the test set accuracy vs. train-

ing iterations with initialization from the high-fan network. The highest overall ac-

curacy achieved was 39.434% after 120000 training iterations. The top-1 error rate

of this model was 87%. Compared to random initialization, the overall accuracy

increased by 1.55% and the top-1 error rate was reduced by 3%.

78

Figure 47. Results from the dog generalist-without network. Left: The confusion
matrix generated by the best model for dog with initialization from the generalist
superset network without dog data. Right: The accuracy on the test set over training.

Generalist Without Dogs Initialization. Figure 47 shows the test set

accuracy vs. training iterations with initialization from the more distant generalist

without dogs network. The highest overall accuracy achieved was 38.869% after

122800 training iterations. The top-1 error rate of this model was 92%. Compared

to random initialization, the overall accuracy increased by .985% and the top-1 error

rate was increased by 2%.

79

Figure 48. Results from the dog high-fan-without network. Left: The confusion matrix
generated by the best model for dog with initialization from the high-fan superset
network without dog data. Right: The accuracy on the test set over training.

High-Fan Without Dogs Initialization. Figure 44 shows the test set

accuracy vs. training iterations with initialization from the more distant high-fan

without dogs network. The highest overall accuracy achieved was 35.127% after

103400 training iterations. The top-1 error rate of this model was 93%. Compared to

random initialization, the overall accuracy decreased by 2.757% and the top-1 error

rate was increased by 3%.

80

Figure 49. The performance of all dog networks on one figure.

Figure 50. The best accuracy of all dog networks on one figure.

81

Figures 49 and 50 show the overall results for the Dog dataset. In all cases but

one, transfer learning improved the performance over the random initialization. The

best source was the generalist superset network, which had the greatest increase in

overall accuracy to 39.568%. It was also the best source for reducing the top-1 error

rate. It had a top-1 error rate of 86% compared to the scratch initialization network’s

top-1 error rate of 90%. The generalist network also took the longest to converge

at 158400 training iterations. All other transferred networks took less training to

converge than the scratch network, which took 134200 training iterations. The class

responsible for the top-1 error rate was different for each network, except for the two

generalist networks.

This dataset requires a difference of .15% accuracy in order to be considered

statistically significant with a 95% confidence. The high-fan and generalist networks

do not meet this criteria for statistical significance in their difference with each other.

4.3.4 Cats.

Figure 51. Results from the cat scratch network. Left: The confusion matrix generated
by the best model for cat with random initialization. Right: The accuracy on the test
set over training.

82

Scratch Initialization. Figure 51 shows the test set accuracy vs. train-

ing iterations with random initialization. The highest overall accuracy achieved was

52.764% after 72800 training iterations. The top-1 error rate of this model was 66%.

Figure 52. Results from the cat generalist network. Left: The confusion matrix gener-
ated by the best model for cat with initialization from the generalist superset network.
Right: The accuracy on the test set over training.

Generalist Initialization. Figure 52 shows the test set accuracy vs.

training iterations with initialization from the generalist network. The highest overall

accuracy achieved was 73.869% after 19400 training iterations. The top-1 error rate

of this model was 42%. Compared to random initialization, the overall accuracy

increased by 21.105% and the top-1 error rate was reduced by 24%.

83

Figure 53. Results from the cat high-fan network. Left: The confusion matrix generated
by the best model for cat with initialization from the high-fan superset network. Right:
The accuracy on the test set over training.

High-Fan Initialization. Figure 53 shows the test set accuracy vs. train-

ing iterations with initialization from the high-fan network. The highest overall accu-

racy achieved was 75.544% after 12600 training iterations. The top-1 error rate of this

model was 36%. Compared to random initialization, the overall accuracy increased

by 22.78% and the top-1 error rate was reduced by 30%.

84

Figure 54. Results from the cat generalist-without network. Left: The confusion matrix
generated by the best model for cat with initialization from the generalist superset
network without cat data. Right: The accuracy on the test set over training.

Generalist Without Cats Initialization. Figure 54 shows the test set

accuracy vs. training iterations with initialization from the more distant generalist

without cats network. The highest overall accuracy achieved was 69.849% after 43800

training iterations. The top-1 error rate of this model was 50%. Compared to random

initialization, the overall accuracy increased by 17.085% and the top-1 error rate was

reduced by 16%.

85

Figure 55. Results from the cat high-fan-without network. Left: The confusion matrix
generated by the best model for cat with initialization from the high-fan superset
network without cat data. Right: The accuracy on the test set over training.

High-Fan Without Cats Initialization. Figure 55 shows the test set

accuracy vs. training iterations with initialization from the more distant high-fan

without cats network. The highest overall accuracy achieved was 74874% after 28400

training iterations. The top-1 error rate of this model was 36%. Compared to random

initialization, the overall accuracy increased by 22.11% and the top-1 error rate was

reduced by 30%.

86

Figure 56. The performance of all cat networks on one figure.

Figure 57. The best accuracy of all cat networks on one figure.

87

Figures 56 and 57 show the overall results for the cat dataset. In all cases transfer

learning improved the performance over the random initialization. The best source

was the high-fan superset network, which had the greatest increase in overall accuracy

of 22.78%. It was also the best source for reducing the top-1 error rate. It had a top-1

error rate of 36% compared to the scratch initialization network’s top-1 error rate of

66%. It also took least training iterations at 12600 iterations. It is worth noting that

all networks took substantially less training than the scratch network (less than half

in three out of four case). The class responsible for the top-1 error rate was the same

for the two generalist networks and the scratch network. The two high-fan networks

each had different classes for the top-1 error rate.

This dataset requires a difference of 2.22% accuracy in order to be considered

statistically significant with 95% confidence. The generalist, high-fan, and high-

fan-without networks are not statistically significant in their difference with each

other. The general-without network and generalist network are also not statistically

significant in their difference. The generalist-without and high-fan-without networks

are also not different to a statistically significant degree.

88

4.3.5 Flowers.

Figure 58. Results from the flower scratch network. Left: The confusion matrix gen-
erated by the best model for flower with random initialization. Right: The accuracy
on the test set over training.

Scratch Initialization. Figure 58 shows the test set accuracy vs. train-

ing iterations with random initialization. The highest overall accuracy achieved was

65.256% after 38600 training iterations. The top-1 error rate of this model was 100%.

Figure 59. Results from the flower generalist network. Left: The confusion matrix
generated by the best model for flower with initialization from the generalist superset
network. Right: The accuracy on the test set over training.

89

Generalist Initialization. Figure 59 shows the test set accuracy vs.

training iterations with initialization from the generalist network. The highest overall

accuracy achieved was 81.135% after 27700 training iterations. The top-1 error rate

of this model was 90.91%. Compared to random initialization, the overall accuracy

increased by 15.879% and the top-1 error rate was reduced by 9.09%.

Figure 60. Results from the flower high-fan network. Left: The confusion matrix
generated by the best model for flower with initialization from the high-fan superset
network. Right: The accuracy on the test set over training.

High-Fan Initialization. Figure 60 shows the test set accuracy vs. train-

ing iterations with initialization from the high-fan superset network. The highest

overall accuracy achieved was 83.579% after 36000 training iterations. The top-1

error rate of this model was 90%. Compared to random initialization, the overall

accuracy increased by 18.323% and the top-1 error rate was reduced by 10%.

90

Figure 61. Results from the flower generalist-without network. Left: The confusion
matrix generated by the best model for flower with initialization from the general-
ist superset network without flower data. Right: The accuracy on the test set over
training.

Generalist Without Flowers Initialization. Figure 61 shows the test

set accuracy vs. training iterations with initialization form the generalist without

flowers network. The highest overall accuracy achieved was 79.144% after 25800

training iterations. The top-1 error rate of this model was 90.91%. Compared to

random initialization, the overall accuracy increased by 13.888% and the top-1 error

rate was reduced by 9.09%.

91

Figure 62. Results from the flower high-fan-without network. Left: The confusion
matrix generated by the best model for flower with initialization from the high-fan su-
perset network without flower data. Right: The accuracy on the test set over training.

High-Fan Without Flowers Initialization. Figure 62 shows the test

set accuracy vs. training iterations with initialization from the high-fan network

without flowers. The highest overall accuracy achieved was 80.836% after 34000

training iterations. The top-1 error rate of this model was 70%. Compared to random

initialization, the overall accuracy increased by 15.58% and the top-1 error rate was

reduced by 30%.

92

Figure 63. The performance of all flower networks on one figure.

Figure 64. The best accuracy of all flower networks on one figure.

93

Figures 63 and 64 show the overall results for the Flower dataset. In all cases

but one, transfer learning improved the performance over the random initialization.

The best source was the high-fan superset network, which had the greatest increase

in overall accuracy to 83.579%. The best source for reducing the top-1 error rate

was the more distant high-fan without flowers network. It had a top-1 error rate of

70% compared to the scratch initialization network’s top-1 error rate of 100%. The

scratch network also took the longest to converge at 38600 training iterations. All

other transferred networks took less training to converge than the scratch network.

The class responsible for the top-1 error rate was the same for the scratch and high-

fan networks. A different class was the also the source of the top-1 error for the

generalist networks.

This dataset requires a difference of .77% accuracy in order to be considered

statistically significant with 95% confidence. The high-fan-without network is not

different enough to achieve statistical significance from either the generalist-without

or the generalist network.

94

4.3.6 Birds.

Figure 65. Results from the bird scratch network. Left: The confusion matrix generated
by the best model for bird with random initialization. Right: The accuracy on the test
set over training.

Scratch Initialization. Figure 65 shows the test set accuracy vs. train-

ing iterations with random initialization. The highest overall accuracy achieved was

34.294% after 28000 training iterations. The top-1 error rate of this model was 100%.

Figure 66. Results from the bird generalist network. Left: The confusion matrix
generated by the best model for bird with initialization from the generalist superset
network. Right: The accuracy on the test set over training.

95

Generalist Initialization. Figure 66 shows the test set accuracy vs.

training iterations with initialization from the generalist network. The highest overall

accuracy achieved was 40.192% after 30000 training iterations. The top-1 error rate

of this model was 100%. Compared to random initialization, the overall accuracy

increased by 5.898% and the top-1 error rate was unchanged.

Figure 67. Results from the bird high-fan network. Left: The confusion matrix gener-
ated by the best model for bird with initialization from the high-fan superset network.
Right: The accuracy on the test set over training.

High-Fan Initialization. Figure 67 shows the test set accuracy vs. train-

ing iterations with initialization from the high-fan network. The highest overall ac-

curacy achieved was 40.604% after 30500 training iterations. The top-1 error rate

of this model was 100%. Compared to random initialization, the overall accuracy

increased by 6.31% and the top-1 error rate was unchanged.

96

Figure 68. Results from the bird generalist-without network. Left: The confusion
matrix generated by the best model for bird with initialization from the generalist
superset network without bird data. Right: The accuracy on the test set over training.

Generalist Without Birds Initialization. Figure 68 shows the test set

accuracy vs. training iterations with initialization from a generalist network trained

on the entire dataset except for birds. The highest overall accuracy achieved was

37.963% after 35800 training iterations. The top-1 error rate of this model was 100%.

Compared to random initialization, the overall accuracy increased by 3.669% and the

top-1 error rate was unchanged.

97

Figure 69. Results from the bird high-fan-without network. Left: The confusion matrix
generated by the best model for bird with initialization from the high-fan superset
network without bird data. Right: The accuracy on the test set over training.

High-Fan Without Birds Initialization. Figure 69 shows the test set

accuracy vs. training iterations with initialization from a high-fan network trained

on the entire dataset except for birds. The highest overall accuracy achieved was

37.654% after 36200 training iterations. The top-1 error rate of this model was 100%.

Compared to random initialization, the overall accuracy increased by 3.36% and the

top-1 error rate was unchanged.

98

Figure 70. The performance of all bird networks on one figure.

Figure 71. The best accuracy of all bird networks on one figure.

99

Figures 70 and 71 show the overall results for the bird dataset. In all cases transfer

learning improved the performance over the random initialization. The best source

was the high-fan superset network, which had the greatest increase in overall accuracy

to 6.31%. All networks had a top-1 error of 100%. They also had multiple classes

with a 100% error rate, although the fine-tuned networks had fewer of these classes

than the scratch network. This is partly because some classes had as few as 10 images

in the test set. All fine-tuned networks also took more training iterations than the

scratch network, although not a substantial amount more. It is worth noting that all

networks took substantially less training than the scratch network (less than half the

train three out of four case).

For this dataset, statistical significance with a confidence of 95% requires a dif-

ference greater than .31%. The generalist-without and high-fan-without models are

within this margin for each other. This is also true of the generalist and high-fan

networks.

4.3.7 Planes.

Figure 72. Results from the plane scratch network. Left: The confusion matrix gener-
ated by the best model for plane with random initialization. Right: The accuracy on
the test set over training.

100

Scratch Initialization. Figure 72 shows the test set accuracy vs. train-

ing iterations with random initialization. The highest overall accuracy achieved was

70.405% after 92300 training iterations. The top-1 error rate of this model was 80%.

Figure 73. Results from the plane generalist network. Left: The confusion matrix
generated by the best model for plane with initialization from the generalist superset
network. Right: The accuracy on the test set over training.

Generalist Initialization. Figure 73 shows the test set accuracy vs.

training iterations with initialization from the generalist network. The highest overall

accuracy achieved was 75.933% after 30600 training iterations. The top-1 error rate

of this model was 72%. Compared to random initialization, the overall accuracy

increased by 5.528% and the top-1 error rate was reduced by 8%.

101

Figure 74. Results from the plane high-fan network. Left: The confusion matrix
generated by the best model for plane with initialization from the high-fan superset
network. Right: The accuracy on the test set over training.

High-Fan Initialization. Figure 74 shows the test set accuracy vs. train-

ing iterations with initialization from the high-fan network. The highest overall accu-

racy achieved was 73.416% after 30800 training iterations. The top-1 error rate of this

model was 68%. Compared to random initialization, the overall accuracy increased

by 3.011% and the top-1 error rate was reduced by 12%.

102

Figure 75. Results from the plane generalist-without network. Left: The confusion
matrix generated by the best model for plane with initialization from the generalist
superset network without plane data. Right: The accuracy on the test set over training.

Generalist Without Planes Initialization. Figure 75 shows the test

set accuracy vs. training iterations with initialization from a generalist network with-

out planes. The highest overall accuracy achieved was 75.214% after 32500 training

iterations. The top-1 error rate of this model was 72%. Compared to random ini-

tialization, the overall accuracy increased by 4.809% and the top-1 error rate was

reduced by 8%.

103

Figure 76. Results from the plane high-fan-without network. Left: The confusion
matrix generated by the best model for plane with initialization from the high-fan
superset network without plane data. Right: The accuracy on the test set over training.

High-Fan Without Planes Initialization. Figure 76 shows the test set

accuracy vs. training iterations with initialization from the high-fan without planes

network. The highest overall accuracy achieved was 71.573% after 80100 training

iterations. The top-1 error rate of this model was 72%. Compared to random initial-

ization, the overall accuracy was increased by 1.168% and the top-1 error rate was

reduced by 8%.

104

Figure 77. The performance of all plane networks on one figure.

Figure 78. The best accuracy of all plane networks on one figure.

105

Figures 77 and 78 show the overall results for the plane dataset. In all cases

transfer learning improved the performance over the random initialization. The best

source was the generalist superset network, which had the greatest increase in overall

accuracy of 5.528%. It also took least training iterations at 30600 iterations. The

best source for reducing the top-1 error rate was the high-fan superset network. It

had a top-1 error rate of 68% compared to the scratch initialization network’s top-1

error rate of 80%. It is worth noting that all networks took substantially less training

than the scratch network with the exception of the high-fan without planes superset

source, which only improved the top-1 error rate. The class responsible for the top-1

error rate was the different each network.

A difference of .61% accuracy is considered statistically significant with 95% con-

fidence. The scratch and high-fan-without networks do not meet this threshold. The

generalist and generalist-without also do not meet this threshold.

4.3.8 Overall Results.

In all three cases, the top-performing source is the high-fan network. In each

case, the generalist network had one fewer win than the high-fan network. The more

distant generalist-without and high-fan-without networks always had equal results

and always had fewer wins than the high-fan network.

Table 10 shows the results and figure 79 provides a visual representation of the

same data. When viewed this way, the high-fan network achieves the best overall

result with a mean error reduction rate of 28.5%. The generalist network actually

Table 9. A tabulation of the “winners” from the third experiment.

S G HF GW HFW
Wins 0 2 3 1 1
Statistically Significant Wins 0 0 1 0 0
Within Margin of Winning 1 5 6 3 3

106

achieves the lowest mean error reduction rate of 22.9%. However, this is largely

attributable to its underperformance on the signs dataset, which did not have any

statistically significant results. When removed, the mean error reduction rate in-

creases to 23.6% while the generalist-without and high-fan-without networks fall to

20.0% and 19.8%, respectively. The high-fan network still retains the highest rate at

24.2%, however.

Figure 79. The reduction in error rate for all datasets using the scratch network as the
baseline performance.

Table 10. The reduction in error rate for each dataset

G HF GW HFW
Sign 18.1657 54.5414 60.6114 54.5414
Vegetable 21.2968 22.0706 20.5247 22.3421
Dog 2.7095 2.4938 1.5842 -4.4402
Cat 44.6799 48.2259 36.1694 46.8075
Flower 45.7029 52.7343 39.9724 44.8423
Bird 8.9763 9.6034 5.5840 5.1137
Plane 18.6788 10.1740 16.2494 3.9466

Mean 22.871 28.5491 25.8136 24.7362

107

4.4 Comparing Ensemble Networks

This experiment compares the results of a an ensemble of randomly initialized

networks to an ensemble of networks trained with transfer learning. Three additional

scratch networks to use along with the scratch network from the planes dataset above.

They individually achieved an overall accuracy of 68.247, 69.438, 69.775. The ensem-

ble of fine-tuned networks is made up of the four networks from the planes dataset

above.

Figure 80. The confusion matrices for the ensemble networks. Left: The confusion
matrix generated by the ensemble of scratch networks. Right: The confusion matrix
generated by the ensemble of fine-tuned networks.

Figure 80 shows the confusion matrix for the two ensembles. The ensemble of

scratch networks achieved an overall accuracy of 73.146 and a top-1 error rate of

80%. The ensemble of fine-tuned networks achieved an overall accuracy of 78.719%

and a top-1 error rate of 68%. Both ensembles outperformed any of the individ-

ual networks in the ensemble. Given a .61% margin for a 95% confidence interval,

the scratch ensemble still underperforms the best fine-tuned network (generalist at

75.933% accuracy) to a statistically significant degree. Figure 84 shows these results.

108

Figure 81. Comparison of the ensemble networks and the top performing scratch and
fine-tuned networks

This concludes the results generated by all of the experiments.

109

V. Conclusions

5.1 Discussion of Results

This thesis presented several experiments regarding parameter fine-tuning. The

previous chapter reported the raw results from these experiments. This chapter will

discuss the results and explain what conclusions may or may not be drawn from them.

Some of the most relevant charts are reproduced here for ease of reference.

Figure 82. The results of all the layer-wise networks. Left: The performance of all the
networks on one figure. Right: The best accuracy of each network.

Determining Specificity of Features. This experiment recreated some

of the work done by Yosinski et al on a different dataset [52]. The results (shown con-

cisely in figure 82) suggest that the first couple of layers from a ConvNet are universal.

As depth increases, layers become less transferable because they are specific to the

dataset on which they were trained. This demonstrates the need to continue learning

in the previous transferred layers. The results from the first few layers improved

over random initialization, but not to a statistically significant degree. However, they

110

demonstrated the same trend found in Yosinki’s work, suggesting that this trend is

universal.

Optimizing Learn Rate. The previous experiment shows that learning

is necessary in all layers. This experiment seeks to find the optimal learn rate in

those layers. The results show that as the learn rate is increased in the transferred

layers to the point where it matches the learn rate in the randomly initialized layers,

the overall accuracy of the ConvNet improves. This suggests, contrary to Girshick

et al that “clobbering learning” should be avoided [22]. Rather than a technique

that transfers knowledge that should be preserved, parameter fine-tuning should be

thought of as a superior initialization compared to Gaussian noise.

Figure 83. The combined results of all the networks with different learning rate mul-
tipliers. Left: The performance of all the networks on one figure based on their learn
rate multiplier. Right: The best accuracy of each network.

Measuring Effect of Source Task on Target Task. Having estab-

lished the optimal learning rate, the next goal is to determine the best source task.

The results from this experiment are mixed. The results clearly demonstrate that pa-

rameter fine-tuning almost always outperforms random initialization. In 27/28 cases,

111

this is true. When statistical significance is taken into account, this number falls to

22/28; however, 4 of those cases come from the signs dataset where 100% accuracy

is still not statistically significant from the baseline set by the scratch network. Also

noteworthy is the fact that initial performance is much better on fine-tuned networks

compared to scratch networks. After a few hundred training iterations, fine-tuned

networks generally achieve an accuracy not far from the best accuracy achieved by

the model. The scratch network, however, is still not much better than a random clas-

sifier. The amount of training to achieve the optimal model is not necessarily reduced,

but the amount of training to achieve a reasonable model is greatly reduced. This

suggests fine-tuning has value in applications which may call for rapid prototyping.

In general, it seems that the high-fan network transfers the best. It was the

top performer compared to the other networks in terms of both wins and mean error

reduction rate. However, the generalist network comes close behind. The more distant

networks trained without that particular subset of data almost always either mirror

the performance of that closer network or underperform it. This is especially apparent

when looking at figure 79.

The amount of training data in the target task seems to have little effect on

the performance of fine-tuning. It was thought that the more data in the target

dataset, the less useful fine-tuning would be. This appears to be the case for the

dog dataset, which has the most training images available and shows little gain over

random initialization. However, the bird dataset showed little gain over random

initialization and had the least amount of training data per class available.

Table 11. A tabulation of the “winners” from the third experiment.

S G HF GW HFW
Wins 0 2 3 1 1
Statistically Significant Wins 0 0 1 0 0
Within Margin of Winning 1 5 6 3 3

112

Comparing Ensemble Networks. Ensembles of ConvNets have long

been known to outperform individual ConvNets [46][48]. Because of this, it was sus-

pected that an ensemble of fine-tuned ConvNets would outperform a similar ensemble

of randomly initialized ConvNets. This turned out to be the case. Perhaps more note-

worthy is that the ensemble of randomly initialized ConvNets either underperformed

or matched the performance of the individual fine-tuned networks. This suggests that

fine-tuning is as effective or more effective than training ensembles alone.

Figure 84. Comparison of the ensemble networks and the top performing scratch and
fine-tuned networks

5.2 Future Work

This thesis presented a framework that relies on a dataset that can be divided in

multiple ways. After training a network on various configurations of the dataset, it

is then applied to a new dataset. The results of the different networks on the new

dataset are directly comparable. Using this basic experimental framework, there are

113

a number of ways to extend this work. This section presents some ideas.

Exhaustive Testing of Dataset. Only experiment three was exhaus-

tively tested against the entire of the dataset. The other three experiments were only

tested on the planes subset of the data due to time constraints. It would be important

to ensure that these results are consistent across all datasets and aren’t anomalous.

The result of the ensemble experiment is especially important to confirm since it is

the most applicable result.

Moving Beyond Fine-tuning. As discussed in chapter two, algorithms

such as R-CNN use the output of a ConvNet as a generic feature generator to solve

other computer vision problems. Although Azizpour has done some work in testing

the effect of different source tasks on these algorithms, the work done is hardly con-

clusive [4]. This thesis provides a framework for effectively finding the answer to this

question.

Moving Beyond Fine-Grained Imagery. For this thesis, every target

task was learning a specific fine-grained dataset. Many applications may not have a

fine-grained target task. In order to confirm these results are universal, an additional

dataset would be needed.

Optimal Ensemble Composition. Ensembles are effective because a

single ConvNet might overfit the dataset in some specific way. An ensemble overcomes

this by using multiple ConvNets that are unlikely to all overfit in the same way. Do

different initializations provide this, or does the random nature of stochastic gradient

descent do this?

114

Testing Different Architectures. It is assumed that these results would

be universal regardless of the underlying network architecture. Empirical results

would be needed to confirm this assumption. In particular, it would be interesting to

see the results on GoogLeNet, the current leading architecture.

5.3 Final Remarks

Convolutional Neural Networks have achieved state of the art performance in

many computer vision problems in recent years. Image classification is an important

problem facing the academic community and is a piece of many problems facing

the Air Force such as automated aerial refueling. This thesis shows that transfer

learning via parameter fine-tuning is an effective way to improve the performance of

ConvNets.

115

VI. Appendix A: Full Dataset Listing

Table 12. A full list of the classes, images, and sources from the dataset.

Major Class Minor Class Images Train Test Source

vegetable cayenne 730 548 182 ImageNet

vegetable cucumber 800 600 200 ImageNet

vegetable tomato 800 600 200 ImageNet

vegetable radish 800 600 200 ImageNet

vegetable carrot 800 600 200 ImageNet

vegetable fava 800 600 200 ImageNet

vegetable shallot 686 515 171 ImageNet

vegetable broccoli 800 600 200 ImageNet

vegetable pumpkin 800 600 200 ImageNet

vegetable black 515 387 128 ImageNet

vegetable asparagus 800 600 200 ImageNet

vegetable brussel sprouts 800 600 200 ImageNet

vegetable artichoke 771 579 192 ImageNet

vegetable cauliflower 800 600 200 ImageNet

vegetable spinach 748 561 187 ImageNet

vegetable bell 800 600 200 ImageNet

vegetable pinto 223 168 55 ImageNet

vegetable snow pea 800 600 200 ImageNet

vegetable kidney 726 545 181 ImageNet

vegetable mushroom 800 600 200 ImageNet

vegetable okra 800 600 200 ImageNet

vegetable leek 536 402 134 ImageNet

vegetable plantain 717 538 179 ImageNet

vegetable eggplant 800 600 200 ImageNet

cat Siamese 200 150 50 Oxford Pets

cat Egyptian Mau 194 146 48 Oxford Pets

116

cat Birman 200 150 50 Oxford Pets

cat Russian Blue 200 150 50 Oxford Pets

cat Ragdoll 200 150 50 Oxford Pets

cat Bombay 200 150 50 Oxford Pets

cat Sphynx 200 150 50 Oxford Pets

cat British Shorthair 200 150 50 Oxford Pets

cat Maine Coon 200 150 50 Oxford Pets

cat Persian 200 150 50 Oxford Pets

cat Abyssinian 198 149 49 Oxford Pets

cat Bengal 200 150 50 Oxford Pets

flower bearded iris 54 41 13 Oxford Flowers

flower hard-leaved pocket orchid 60 45 15 Oxford Flowers

flower purple coneflower 85 64 21 Oxford Flowers

flower bee balm 66 50 16 Oxford Flowers

flower foxglove 162 122 40 Oxford Flowers

flower poinsettia 93 70 23 Oxford Flowers

flower carnation 52 39 13 Oxford Flowers

flower japanese anemone 55 42 13 Oxford Flowers

flower moon orchid 40 30 10 Oxford Flowers

flower alpine sea holly 43 33 10 Oxford Flowers

flower colts foot 87 66 21 Oxford Flowers

flower desert-rose 63 48 15 Oxford Flowers

flower bolero deep blue 40 30 10 Oxford Flowers

flower giant white arum lily 56 42 14 Oxford Flowers

flower californian poppy 102 77 25 Oxford Flowers

flower sword lily 130 98 32 Oxford Flowers

flower corn poppy 41 31 10 Oxford Flowers

flower primula 93 70 23 Oxford Flowers

flower water lily 194 146 48 Oxford Flowers

flower spring crocus 42 32 10 Oxford Flowers

117

flower petunia 258 194 64 Oxford Flowers

flower azalea 96 72 24 Oxford Flowers

flower rose 171 129 42 Oxford Flowers

flower frangipani 166 125 41 Oxford Flowers

flower stemless gentian 66 50 16 Oxford Flowers

flower peruvian lily 82 62 20 Oxford Flowers

flower windflower 54 41 13 Oxford Flowers

flower blackberry lily 48 36 12 Oxford Flowers

flower lenten rose 67 51 16 Oxford Flowers

flower daffodil 59 45 14 Oxford Flowers

flower orange dahlia 67 51 16 Oxford Flowers

flower siam tulip 41 31 10 Oxford Flowers

flower gazania 78 59 19 Oxford Flowers

flower oxeye daisy 49 37 12 Oxford Flowers

flower spear thistle 48 36 12 Oxford Flowers

flower bishop of llandaff 109 82 27 Oxford Flowers

flower gaura 67 51 16 Oxford Flowers

flower yellow iris 49 37 12 Oxford Flowers

flower toad lily 41 31 10 Oxford Flowers

flower garden phlox 45 34 11 Oxford Flowers

flower grape hyacinth 41 31 10 Oxford Flowers

flower red ginger 42 32 10 Oxford Flowers

flower canna lily 82 62 20 Oxford Flowers

flower fritillary 91 69 22 Oxford Flowers

flower osteospermum 61 46 15 Oxford Flowers

flower geranium 114 86 28 Oxford Flowers

flower hippeastrum 76 57 19 Oxford Flowers

flower anthurium 105 79 26 Oxford Flowers

flower pink primrose 40 30 10 Oxford Flowers

flower mexican petunia 82 62 20 Oxford Flowers

118

flower tree poppy 62 47 15 Oxford Flowers

flower prince of wales feathers 40 30 10 Oxford Flowers

flower bougainvillea 128 96 32 Oxford Flowers

flower sunflower 61 46 15 Oxford Flowers

flower wild pansy 85 64 21 Oxford Flowers

flower king protea 49 37 12 Oxford Flowers

flower mallow 66 50 16 Oxford Flowers

flower barbeton daisy 127 96 31 Oxford Flowers

flower pink-yellow dahlia 109 82 27 Oxford Flowers

flower artichoke 78 59 19 Oxford Flowers

flower watercress 184 138 46 Oxford Flowers

flower cape flower 108 81 27 Oxford Flowers

flower magnolia 63 48 15 Oxford Flowers

flower english marigold 65 49 16 Oxford Flowers

flower sweet william 85 64 21 Oxford Flowers

flower pincushion flower 59 45 14 Oxford Flowers

flower black-eyed susan 54 41 13 Oxford Flowers

flower globe thistle 45 34 11 Oxford Flowers

flower clematis 112 84 28 Oxford Flowers

flower globe-flower 41 31 10 Oxford Flowers

flower great masterwort 56 42 14 Oxford Flowers

flower lotus 137 103 34 Oxford Flowers

flower fire lily 40 30 10 Oxford Flowers

flower camellia 91 69 22 Oxford Flowers

flower mexican aster 40 30 10 Oxford Flowers

flower wallflower 196 147 49 Oxford Flowers

flower tree mallow 58 44 14 Oxford Flowers

flower trumpet creeper 58 44 14 Oxford Flowers

flower love in the mist 46 35 11 Oxford Flowers

flower snapdragon 87 66 21 Oxford Flowers

119

flower morning glory 107 81 26 Oxford Flowers

flower passion flower 251 189 62 Oxford Flowers

flower silverbush 52 39 13 Oxford Flowers

flower ball moss 46 35 11 Oxford Flowers

flower thorn apple 120 90 30 Oxford Flowers

flower bromelia 63 48 15 Oxford Flowers

flower tiger lily 45 34 11 Oxford Flowers

flower blanket flower 49 37 12 Oxford Flowers

flower columbine 86 65 21 Oxford Flowers

flower hibiscus 131 99 32 Oxford Flowers

flower monkshood 46 35 11 Oxford Flowers

flower balloon flower 49 37 12 Oxford Flowers

flower ruby-lipped cattleya 75 57 18 Oxford Flowers

flower pelargonium 71 54 17 Oxford Flowers

flower sweet pea 56 42 14 Oxford Flowers

flower cautleya spicata 50 38 12 Oxford Flowers

flower cyclamen 154 116 38 Oxford Flowers

flower buttercup 71 54 17 Oxford Flowers

flower common dandelion 92 69 23 Oxford Flowers

flower bird of paradise 85 64 21 Oxford Flowers

flower canterbury bells 40 30 10 Oxford Flowers

flower marigold 67 51 16 Oxford Flowers

bird Lazuli Bunting 58 44 14 Caltech-UCSD Birds

bird Green tailed Towhee 60 45 15 Caltech-UCSD Birds

bird Heermann Gull 60 45 15 Caltech-UCSD Birds

bird Ovenbird 60 45 15 Caltech-UCSD Birds

bird Yellow headed Blackbird 56 42 14 Caltech-UCSD Birds

bird Crested Auklet 44 33 11 Caltech-UCSD Birds

bird Horned Lark 60 45 15 Caltech-UCSD Birds

bird Groove billed Ani 60 45 15 Caltech-UCSD Birds

120

bird Red breasted Merganser 60 45 15 Caltech-UCSD Birds

bird Barn Swallow 60 45 15 Caltech-UCSD Birds

bird Common Tern 60 45 15 Caltech-UCSD Birds

bird Ring billed Gull 60 45 15 Caltech-UCSD Birds

bird Parakeet Auklet 53 40 13 Caltech-UCSD Birds

bird Chuck will Widow 56 42 14 Caltech-UCSD Birds

bird Northern Flicker 60 45 15 Caltech-UCSD Birds

bird Indigo Bunting 60 45 15 Caltech-UCSD Birds

bird Canada Warbler 60 45 15 Caltech-UCSD Birds

bird White necked Raven 60 45 15 Caltech-UCSD Birds

bird Henslow Sparrow 60 45 15 Caltech-UCSD Birds

bird White breasted Kingfisher 60 45 15 Caltech-UCSD Birds

bird Yellow bellied Flycatcher 59 45 14 Caltech-UCSD Birds

bird Glaucous winged Gull 59 45 14 Caltech-UCSD Birds

bird Acadian Flycatcher 59 45 14 Caltech-UCSD Birds

bird Anna Hummingbird 60 45 15 Caltech-UCSD Birds

bird Pelagic Cormorant 60 45 15 Caltech-UCSD Birds

bird Swainson Warbler 56 42 14 Caltech-UCSD Birds

bird Pied Kingfisher 60 45 15 Caltech-UCSD Birds

bird White throated Sparrow 60 45 15 Caltech-UCSD Birds

bird Scott Oriole 60 45 15 Caltech-UCSD Birds

bird White Pelican 50 38 12 Caltech-UCSD Birds

bird Western Wood Pewee 60 45 15 Caltech-UCSD Birds

bird Brown Pelican 60 45 15 Caltech-UCSD Birds

bird Le Conte Sparrow 59 45 14 Caltech-UCSD Birds

bird Gray crowned Rosy Finch 59 45 14 Caltech-UCSD Birds

bird Bobolink 60 45 15 Caltech-UCSD Birds

bird Bay breasted Warbler 60 45 15 Caltech-UCSD Birds

bird Pacific Loon 60 45 15 Caltech-UCSD Birds

bird Tennessee Warbler 59 45 14 Caltech-UCSD Birds

121

bird Geococcyx 60 45 15 Caltech-UCSD Birds

bird Song Sparrow 60 45 15 Caltech-UCSD Birds

bird Savannah Sparrow 60 45 15 Caltech-UCSD Birds

bird Lincoln Sparrow 59 45 14 Caltech-UCSD Birds

bird Yellow billed Cuckoo 59 45 14 Caltech-UCSD Birds

bird Black billed Cuckoo 60 45 15 Caltech-UCSD Birds

bird Hooded Merganser 60 45 15 Caltech-UCSD Birds

bird Forsters Tern 60 45 15 Caltech-UCSD Birds

bird White breasted Nuthatch 60 45 15 Caltech-UCSD Birds

bird Prothonotary Warbler 60 45 15 Caltech-UCSD Birds

bird Chestnut sided Warbler 60 45 15 Caltech-UCSD Birds

bird American Crow 60 45 15 Caltech-UCSD Birds

bird American Redstart 60 45 15 Caltech-UCSD Birds

bird Rose breasted Grosbeak 60 45 15 Caltech-UCSD Birds

bird Cerulean Warbler 60 45 15 Caltech-UCSD Birds

bird Warbling Vireo 60 45 15 Caltech-UCSD Birds

bird Olive sided Flycatcher 60 45 15 Caltech-UCSD Birds

bird Rusty Blackbird 60 45 15 Caltech-UCSD Birds

bird Long tailed Jaeger 60 45 15 Caltech-UCSD Birds

bird Louisiana Waterthrush 60 45 15 Caltech-UCSD Birds

bird Cape Glossy Starling 60 45 15 Caltech-UCSD Birds

bird Field Sparrow 59 45 14 Caltech-UCSD Birds

bird Chipping Sparrow 60 45 15 Caltech-UCSD Birds

bird Carolina Wren 60 45 15 Caltech-UCSD Birds

bird Bewick Wren 60 45 15 Caltech-UCSD Birds

bird Grasshopper Sparrow 60 45 15 Caltech-UCSD Birds

bird Black capped Vireo 51 39 12 Caltech-UCSD Birds

bird Ruby throated Hummingbird 60 45 15 Caltech-UCSD Birds

bird Pine Warbler 60 45 15 Caltech-UCSD Birds

bird Bohemian Waxwing 60 45 15 Caltech-UCSD Birds

122

bird House Sparrow 60 45 15 Caltech-UCSD Birds

bird Hooded Warbler 60 45 15 Caltech-UCSD Birds

bird Loggerhead Shrike 60 45 15 Caltech-UCSD Birds

bird Philadelphia Vireo 59 45 14 Caltech-UCSD Birds

bird Golden winged Warbler 59 45 14 Caltech-UCSD Birds

bird Least Flycatcher 59 45 14 Caltech-UCSD Birds

bird Pine Grosbeak 60 45 15 Caltech-UCSD Birds

bird Worm eating Warbler 59 45 14 Caltech-UCSD Birds

bird Mangrove Cuckoo 53 40 13 Caltech-UCSD Birds

bird Nighthawk 60 45 15 Caltech-UCSD Birds

bird Dark eyed Junco 60 45 15 Caltech-UCSD Birds

bird Baltimore Oriole 60 45 15 Caltech-UCSD Birds

bird Blue winged Warbler 60 45 15 Caltech-UCSD Birds

bird Ivory Gull 60 45 15 Caltech-UCSD Birds

bird Sage Thrasher 60 45 15 Caltech-UCSD Birds

bird Blue Grosbeak 60 45 15 Caltech-UCSD Birds

bird Red eyed Vireo 60 45 15 Caltech-UCSD Birds

bird House Wren 59 45 14 Caltech-UCSD Birds

bird Baird Sparrow 50 38 12 Caltech-UCSD Birds

bird Caspian Tern 60 45 15 Caltech-UCSD Birds

bird Painted Bunting 58 44 14 Caltech-UCSD Birds

bird Horned Puffin 60 45 15 Caltech-UCSD Birds

bird Prairie Warbler 60 45 15 Caltech-UCSD Birds

bird Mallard 60 45 15 Caltech-UCSD Birds

bird Green Violetear 60 45 15 Caltech-UCSD Birds

bird Brown Creeper 59 45 14 Caltech-UCSD Birds

bird Brandt Cormorant 59 45 14 Caltech-UCSD Birds

bird Fox Sparrow 60 45 15 Caltech-UCSD Birds

bird Gray Kingbird 59 45 14 Caltech-UCSD Birds

bird Least Auklet 41 31 10 Caltech-UCSD Birds

123

bird Spotted Catbird 45 34 11 Caltech-UCSD Birds

bird Yellow breasted Chat 59 45 14 Caltech-UCSD Birds

bird Common Raven 59 45 14 Caltech-UCSD Birds

bird Western Grebe 60 45 15 Caltech-UCSD Birds

bird Least Tern 60 45 15 Caltech-UCSD Birds

bird Shiny Cowbird 60 45 15 Caltech-UCSD Birds

bird Red cockaded Woodpecker 58 44 14 Caltech-UCSD Birds

bird Black and white Warbler 60 45 15 Caltech-UCSD Birds

bird California Gull 60 45 15 Caltech-UCSD Birds

bird Slaty backed Gull 50 38 12 Caltech-UCSD Birds

bird Black throated Blue Warbler 59 45 14 Caltech-UCSD Birds

bird Scarlet Tanager 60 45 15 Caltech-UCSD Birds

bird Blue headed Vireo 60 45 15 Caltech-UCSD Birds

bird Cliff Swallow 60 45 15 Caltech-UCSD Birds

bird Red faced Cormorant 52 39 13 Caltech-UCSD Birds

bird Whip poor Will 49 37 12 Caltech-UCSD Birds

bird Elegant Tern 60 45 15 Caltech-UCSD Birds

bird Bronzed Cowbird 60 45 15 Caltech-UCSD Birds

bird Red winged Blackbird 60 45 15 Caltech-UCSD Birds

bird Bank Swallow 59 45 14 Caltech-UCSD Birds

bird Evening Grosbeak 60 45 15 Caltech-UCSD Birds

bird Laysan Albatross 60 45 15 Caltech-UCSD Birds

bird Orchard Oriole 59 45 14 Caltech-UCSD Birds

bird Rock Wren 60 45 15 Caltech-UCSD Birds

bird Artic Tern 58 44 14 Caltech-UCSD Birds

bird Cardinal 57 43 14 Caltech-UCSD Birds

bird Great Grey Shrike 60 45 15 Caltech-UCSD Birds

bird Red bellied Woodpecker 60 45 15 Caltech-UCSD Birds

bird Eastern Towhee 60 45 15 Caltech-UCSD Birds

bird Cedar Waxwing 60 45 15 Caltech-UCSD Birds

124

bird Sayornis 60 45 15 Caltech-UCSD Birds

bird Yellow throated Vireo 59 45 14 Caltech-UCSD Birds

bird Mourning Warbler 60 45 15 Caltech-UCSD Birds

bird Green Jay 57 43 14 Caltech-UCSD Birds

bird Blue Jay 60 45 15 Caltech-UCSD Birds

bird Fish Crow 60 45 15 Caltech-UCSD Birds

bird Nelson Sharp tailed Sparrow 59 45 14 Caltech-UCSD Birds

bird Myrtle Warbler 60 45 15 Caltech-UCSD Birds

bird Eared Grebe 60 45 15 Caltech-UCSD Birds

bird Brewer Sparrow 59 45 14 Caltech-UCSD Birds

bird Pigeon Guillemot 58 44 14 Caltech-UCSD Birds

bird Common Yellowthroat 60 45 15 Caltech-UCSD Birds

bird American Three toed Woodpecker 50 38 12 Caltech-UCSD Birds

bird Boat tailed Grackle 60 45 15 Caltech-UCSD Birds

bird Black Tern 60 45 15 Caltech-UCSD Birds

bird American Goldfinch 60 45 15 Caltech-UCSD Birds

bird Tree Swallow 60 45 15 Caltech-UCSD Birds

bird Summer Tanager 60 45 15 Caltech-UCSD Birds

bird Hooded Oriole 60 45 15 Caltech-UCSD Birds

bird Belted Kingfisher 60 45 15 Caltech-UCSD Birds

bird Gray Catbird 59 45 14 Caltech-UCSD Birds

bird Sooty Albatross 58 44 14 Caltech-UCSD Birds

bird Western Meadowlark 60 45 15 Caltech-UCSD Birds

bird Frigatebird 60 45 15 Caltech-UCSD Birds

bird European Goldfinch 60 45 15 Caltech-UCSD Birds

bird Vermilion Flycatcher 60 45 15 Caltech-UCSD Birds

bird Tropical Kingbird 60 45 15 Caltech-UCSD Birds

bird Clark Nutcracker 60 45 15 Caltech-UCSD Birds

bird Vesper Sparrow 60 45 15 Caltech-UCSD Birds

bird Brewer Blackbird 59 45 14 Caltech-UCSD Birds

125

bird Gadwall 60 45 15 Caltech-UCSD Birds

bird Ringed Kingfisher 60 45 15 Caltech-UCSD Birds

bird Nashville Warbler 60 45 15 Caltech-UCSD Birds

bird Horned Grebe 60 45 15 Caltech-UCSD Birds

bird Rhinoceros Auklet 48 36 12 Caltech-UCSD Birds

bird Purple Finch 60 45 15 Caltech-UCSD Birds

bird Florida Jay 60 45 15 Caltech-UCSD Birds

bird Scissor tailed Flycatcher 60 45 15 Caltech-UCSD Birds

bird Tree Sparrow 60 45 15 Caltech-UCSD Birds

bird Black footed Albatross 60 45 15 Caltech-UCSD Birds

bird Mockingbird 60 45 15 Caltech-UCSD Birds

bird Downy Woodpecker 60 45 15 Caltech-UCSD Birds

bird Northern Fulmar 60 45 15 Caltech-UCSD Birds

bird Black throated Sparrow 60 45 15 Caltech-UCSD Birds

bird Western Gull 60 45 15 Caltech-UCSD Birds

bird Northern Waterthrush 60 45 15 Caltech-UCSD Birds

bird White eyed Vireo 60 45 15 Caltech-UCSD Birds

bird Marsh Wren 60 45 15 Caltech-UCSD Birds

bird Pileated Woodpecker 60 45 15 Caltech-UCSD Birds

bird Magnolia Warbler 59 45 14 Caltech-UCSD Birds

bird Pied billed Grebe 60 45 15 Caltech-UCSD Birds

bird White crowned Sparrow 60 45 15 Caltech-UCSD Birds

bird Rufous Hummingbird 60 45 15 Caltech-UCSD Birds

bird Seaside Sparrow 60 45 15 Caltech-UCSD Birds

bird Pomarine Jaeger 60 45 15 Caltech-UCSD Birds

bird American Pipit 60 45 15 Caltech-UCSD Birds

bird Yellow Warbler 60 45 15 Caltech-UCSD Birds

bird Winter Wren 60 45 15 Caltech-UCSD Birds

bird Green Kingfisher 60 45 15 Caltech-UCSD Birds

bird Red legged Kittiwake 53 40 13 Caltech-UCSD Birds

126

bird Kentucky Warbler 59 45 14 Caltech-UCSD Birds

bird Brown Thrasher 59 45 14 Caltech-UCSD Birds

bird Red headed Woodpecker 60 45 15 Caltech-UCSD Birds

bird Orange crowned Warbler 60 45 15 Caltech-UCSD Birds

bird Harris Sparrow 60 45 15 Caltech-UCSD Birds

bird Cactus Wren 60 45 15 Caltech-UCSD Birds

bird Wilson Warbler 60 45 15 Caltech-UCSD Birds

bird Clay colored Sparrow 59 45 14 Caltech-UCSD Birds

bird Herring Gull 60 45 15 Caltech-UCSD Birds

bird Cape May Warbler 60 45 15 Caltech-UCSD Birds

bird Great Crested Flycatcher 60 45 15 Caltech-UCSD Birds

bird Palm Warbler 60 45 15 Caltech-UCSD Birds

sign sign 00031 149 112 37 KUL Belgian Sign Benchmark

sign sign 00054 166 125 41 KUL Belgian Sign Benchmark

sign sign 00047 178 134 44 KUL Belgian Sign Benchmark

sign sign 00053 223 168 55 KUL Belgian Sign Benchmark

sign sign 00038 495 372 123 KUL Belgian Sign Benchmark

sign sign 00041 159 120 39 KUL Belgian Sign Benchmark

sign sign 00040 290 218 72 KUL Belgian Sign Benchmark

sign sign 00007 247 186 61 KUL Belgian Sign Benchmark

sign sign 00061 376 282 94 KUL Belgian Sign Benchmark

sign sign 00018 200 150 50 KUL Belgian Sign Benchmark

sign sign 00001 137 103 34 KUL Belgian Sign Benchmark

sign sign 00028 176 132 44 KUL Belgian Sign Benchmark

sign sign 00021 88 66 22 KUL Belgian Sign Benchmark

sign sign 00056 128 96 32 KUL Belgian Sign Benchmark

sign sign 00017 262 197 65 KUL Belgian Sign Benchmark

sign sign 00057 119 90 29 KUL Belgian Sign Benchmark

sign sign 00032 738 554 184 KUL Belgian Sign Benchmark

sign sign 00035 214 161 53 KUL Belgian Sign Benchmark

127

sign sign 00039 295 222 73 KUL Belgian Sign Benchmark

sign sign 00045 158 119 39 KUL Belgian Sign Benchmark

sign sign 00019 394 296 98 KUL Belgian Sign Benchmark

sign sign 00037 129 97 32 KUL Belgian Sign Benchmark

sign sign 00013 129 97 32 KUL Belgian Sign Benchmark

sign sign 00022 436 327 109 KUL Belgian Sign Benchmark

dog Airedale 745 559 186 ImageNet

dog toy poodle 800 600 200 ImageNet

dog border terrier 800 600 200 ImageNet

dog tibetan terrier 460 345 115 ImageNet

dog soft-coated terrier 800 600 200 ImageNet

dog curly-coated retriever 238 179 59 ImageNet

dog australian terrier 650 488 162 ImageNet

dog griffon 122 92 30 ImageNet

dog bullterrier 800 600 200 ImageNet

dog standard poodle 800 600 200 ImageNet

dog old english sheepdog 723 543 180 ImageNet

dog toy terrier 409 307 102 ImageNet

dog miniature poodle 422 317 105 ImageNet

dog shepherd 800 600 200 ImageNet

dog shetland sheepdog 800 600 200 ImageNet

dog wolfhound 788 591 197 ImageNet

dog greyhound 800 600 200 ImageNet

dog Rottweiler 783 588 195 ImageNet

dog african hunting dog 791 594 197 ImageNet

dog bull mastiff 554 416 138 ImageNet

dog kuvasz 579 435 144 ImageNet

dog miniature schnauzer 800 600 200 ImageNet

dog clumber 513 385 128 ImageNet

dog basenji 800 600 200 ImageNet

128

dog border collie 800 600 200 ImageNet

dog cairn 800 600 200 ImageNet

dog whippet 800 600 200 ImageNet

dog sussex spaniel 395 297 98 ImageNet

dog EntleBucher 106 80 26 ImageNet

dog Pekinese 800 600 200 ImageNet

dog boxer 800 600 200 ImageNet

dog sealyham terrier 182 137 45 ImageNet

dog west highland white terrier 800 600 200 ImageNet

dog maltese dog 800 600 200 ImageNet

dog schipperke 800 600 200 ImageNet

dog otterhound 158 119 39 ImageNet

dog golden retriever 800 600 200 ImageNet

dog chesapeake bay retriever 800 600 200 ImageNet

dog bedlington terrier 436 327 109 ImageNet

dog Bernese mountain dog 800 600 200 ImageNet

dog beagle 800 600 200 ImageNet

dog springer 800 600 200 ImageNet

dog deerhound 800 600 200 ImageNet

dog labrador retriever 800 600 200 ImageNet

dog wire-haired fox terrier 211 159 52 ImageNet

dog briard 767 576 191 ImageNet

dog tibetian mastiff 800 600 200 ImageNet

dog flat-coated retriever 800 600 200 ImageNet

dog Doberman 800 600 200 ImageNet

dog Flandres 800 600 200 ImageNet

dog bulldog 800 600 200 ImageNet

dog Saluki 702 527 175 ImageNet

dog Samoyed 800 600 200 ImageNet

dog Appenzeller 634 476 158 ImageNet

129

dog greater swiss mountain dog 634 476 158 ImageNet

dog coonhound 156 117 39 ImageNet

dog elkhound 477 358 119 ImageNet

dog malinois 800 600 200 ImageNet

dog ridgeback 800 600 200 ImageNet

dog lakeland terrier 499 375 124 ImageNet

dog affenpinscher 278 209 69 ImageNet

dog boston bull 800 600 200 ImageNet

dog hairless 163 123 40 ImageNet

dog Dinmont 451 339 112 ImageNet

dog dingo 800 600 200 ImageNet

dog norfolk terrier 470 353 117 ImageNet

dog borzoi 800 600 200 ImageNet

dog kelpie 800 600 200 ImageNet

dog ibizan hound 433 325 108 ImageNet

dog kerry blue terrier 373 280 93 ImageNet

dog Shih-Tzu 800 600 200 ImageNet

dog silky terrier 800 600 200 ImageNet

dog brittany spaniel 800 600 200 ImageNet

dog blehnheim spaniel 386 290 96 ImageNet

dog norwich terrier 516 387 129 ImageNet

dog Chihuahua 800 600 200 ImageNet

dog Pyrenees 800 600 200 ImageNet

dog groenendael 756 567 189 ImageNet

dog chow 800 600 200 ImageNet

dog pug 800 600 200 ImageNet

dog keeshond 800 600 200 ImageNet

dog irish terrier 800 600 200 ImageNet

dog standard schnauzer 418 314 104 ImageNet

dog giant schnauzer 736 552 184 ImageNet

130

dog husky 786 590 196 ImageNet

dog pointer 368 276 92 ImageNet

dog malamute 800 600 200 ImageNet

dog yorkshire terrier 800 600 200 ImageNet

dog bluetick 252 189 63 ImageNet

dog gordon setter 800 600 200 ImageNet

dog irish water spaniel 268 201 67 ImageNet

dog komondor 382 287 95 ImageNet

dog english setter 800 600 200 ImageNet

dog collie 800 600 200 ImageNet

dog bloodhound 648 486 162 ImageNet

dog scotch terrier 800 600 200 ImageNet

dog pinscher 800 600 200 ImageNet

dog Newfoundland 800 600 200 ImageNet

dog basset 800 600 200 ImageNet

dog Bernard 800 600 200 ImageNet

dog eskimo dog 800 600 200 ImageNet

dog redbone 454 341 113 ImageNet

dog Pomeranian 800 600 200 ImageNet

dog Dane 800 600 200 ImageNet

dog Lhasa 800 600 200 ImageNet

dog dhole 407 306 101 ImageNet

dog American Staffordshire terrier 720 540 180 ImageNet

dog papillon 703 528 175 ImageNet

dog Leonberg 491 369 122 ImageNet

dog foxhound 211 159 52 ImageNet

dog japanese spaniel 143 108 35 ImageNet

131

Bibliography

1. Convolutional neural networks (lenet). http://deeplearning.net/tutorial/lenet.html.

2. Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Man,

Rajat Monga, Sherry Moore, Derek Murray, Jon Shlens, Benoit Steiner, Ilya

Sutskever, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Oriol Vinyals, Pete

Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467v2,

page 19, 2015.

3. Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. Low

Data Drug Discovery with One-shot Learning. arXiv:1611.03199, pages 1–20,

2016.

4. Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and

Stefan Carlsson KTH. From Generic to Specific Deep Representations for Visual

Recognition. Computer Vision and Pattern Recognition, 2015.

5. Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak Shah.

Comparative Study of Deep Learning Software Frameworks. arXiv:1511.06435v3,

2016.

6. Herbert Bay, Tinne Tuytelaars, Luc Van Gool, A. Leonardis, Horst Bischof, and

Axel Pinz. SURF: Speeded Up Robust Features. Computer Vision, 3951:404–417,

2006.

132

7. Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep

Architectures. In arXiv:1206.5533, pages 437–478. 2012.

8. Yoshua Bengio, Patrice Simard, and P Frasconi. Learning Long Term Dependen-

cies with Gradient Descent is Difficult. IEEE Transactions on Neural Networks,

5(2):157–166, 1994.

9. James Bergstra, Olivier Breuleux, Frederic Frédéric Bastien, Pascal Lamblin,

Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and

Yoshua Bengio. Theano: a CPU and GPU math compiler in Python. Proceedings

of the Python for Scientific Computing Conference (SciPy), (Scipy):1–7, 2010.

10. Leon Bottou. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks of

the Trade, chapter 18, pages 421–436. Springer Berlin Heidelberg, 2012.

11. Kumar Chellapilla, S Puri, and Patrice Simard. High Performance Convolutional

Neural Networks for Document Processing. Tenth International Workshop on

Frontiers in Handwriting Recognition, 2006.

12. Dan Claudiu Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column Deep

Neural Networks for Image Classification. CVPR, pages 3642–3649, 2012.

13. Ronan Collobert. Torch7: A matlab-like environment for machine learning.

BigLearn, NIPS Workshop, pages 1–6, 2011.

14. Ronan Collobert and Jason Weston. A unified architecture for natural language

processing: Deep neural networks with multitask learning. Proceedings of the

25th international conference on Machine learning, pages 160–167, 2008.

15. David E. Ruineihart, Geoffrey E Hinton and Ronald J. Williams. Learning In-

ternal Representations by Error Propagation. Technical Report 1, University of

California San Diego La Jolla Instititue for Cognitive Science, 1985.

133

16. Chen Debao. Degree of approximation by superpositions of a sigmoidal function.

Approximation Theory and its Applications, 9(3):17–28, 1993.

17. Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric

Tzeng, and Trevor Darrell. DeCAF: A Deep Convolutional Activation Feature

for Generic Visual Recognition. International Conference on Machine Learning,

32:647–655, 2014.

18. Dumitru Erhan, Aaron Courville, and Yoshua Bengio. Understanding Represen-

tations Learned in Deep Architectures. Network, (September 2016):1–25, 2010.

19. Clement Farabet, Berin Martini, Polina Akselrod, Selçuk Talay, Yann LeCun,

and Eugenio Culurciello. Hardware Accelerated Convolutional Neural Networks

for Synthetic Vision Systems. Proc. International Symposium on Circuits and

Systems (ISCAS’10), 2010.

20. Kunihiko Fukushima and Sei Miyake. Neocognitron: A new algorithm for pattern

recognition tolerant of deformations and shifts in position. Pattern Recognition,

15(6):455–469, 1982.

21. Colin Fyfe. The Multilayer Perceptron: backprop. In Artificial Neural Networks

and Information Theory, chapter 4, pages 43–62. University of Paisley, 1.2 edition,

2000.

22. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. Proceed-

ings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 580–587, 2014.

134

23. Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S.

Lew. Deep learning for visual understanding: A review. Neurocomputing, 187:27–

48, 2016.

24. Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan R. Salakhutdinov. Improving neural networks by preventing co-adaptation of

feature detectors. ArXiv e-prints, pages 1–18, 2012.

25. D. H. Hubel and T. N. Wiesel. Receptive Fields, Binocular Interaction and Func-

tional Architecture in the Cat’s Visual Cortex. Journal of Physiology, 160:106–

154, 1962.

26. D. H. Hubel and T. N. Wiesel. Receptive Fields and Functional Architecture of

monkey striate cortex. Journal of Physiology, 195:215–243, 1968.

27. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

Architecture for fast feature embedding. Proceedings of the ACM International

Conference on Multimedia - MM ’14, pages 675–678, 2014.

28. Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei.

Novel dataset for fine-grained image categorization: Stanford dogs. First Work-

shop on Fine-Grained Visual Categorization in IEEE Conference on Computer

Vision and Pattern Recognition, 2011.

29. Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. . . .

Science Department, University of Toronto, Tech. . . . , pages 1–60, 2009.

30. Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.

arXiv preprint, pages 1–7, 2014.

135

31. Alex Krizhevsky, IIya Sulskever, and Geoffrey E Hinton. ImageNet Classification

with Deep Convolutional Neural Networks. Advances in Neural Information and

Processing Systems (NIPS), pages 1–9, 2012.

32. Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech,

and time series. The handbook of brain theory and neural networks, 3361:255–

258, 1995.

33. Yann LeCun, Yoshua Bengio, and Geoffrey E Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

34. Yann LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W Hubbard,

and L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition.

Neural Computation, 1(4):541–551, 1989.

35. Yann LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W Hub-

bard, and L. D. Jackel. Handwritten Digit Recognition with a Back-Propagation

Network. Advances in Neural Information Processing Systems, 2, 1990.

36. Yann LeCun, Leon Bottou, and Yoshua Bengio. Reading Checks with Multilayer

Graph Transformer Networks. International Conference on Acoustics, Speech,

and Signal Processing, pages 151–154, 1997.

37. Yann LeCun, Fu Jie Huang Fu Jie Huang, and Leon Bottou. Learning Methods

for Generic Object Recognition with Invariance to Pose and Lighting. Computer

Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE

Computer Society Conference on, 2:II–97 – 104, 2004.

38. David G Lowe. SIFT. Computer Vision, 2:1150–1157, 1999.

39. Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea

Vedaldi. Fine-Grained Visual Classification of Aircraft. TechReport, 2013.

136

40. Robert Mash, Nicholas Becherer, Brian Woolley, and John Pecarina. Toward

Aircraft Recognition With Convolutional Neural Networks. In National Aerospace

& Electronics Conference, Dayton, 2016.

41. Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted

Boltzmann Machines. Proceedings of the 27th International Conference on Ma-

chine Learning, (3):807–814, 2010.

42. Maria-Elena Nilsback and Andrew Zisserman. A Visual Vocabulary for Flower

Classification. In Comptuer Vision and Pattern Recognition, pages 1447–1454,

2006.

43. O M Parkhi, A Vedaldi, A Zisserman, and C V Jawahar. Cats and dogs. 2012

IEEE Conference on Computer Vision and Pattern Recognition, pages 3498–3505,

2012.

44. Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Josephine Carls-

son. CNN Features off-the-shelf: an Astounding Baseline for Recognition. Com-

puter Vision and Pattern Recognition, 2014.

45. Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and

Yann LeCun. OverFeat: Integrated Recognition, Localization and Detection us-

ing Convolutional Networks. arXiv preprint arXiv, page 1312.6229, 2013.

46. Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition. ImageNet Challenge, pages 1–10, 2014.

47. Daniel Strigl, Klaus Kofler, and Stefan Podlipnig. Performance and Scalability

of GPU-Based Convolutional Neural Networks. 2010 18th Euromicro Conference

on Parallel, Distributed and Network-based Processing, pages 317–324, 2010.

137

48. C Szegedy, W Liu, Yangqing Jia, and Pierre Sermanet. Going deeper with con-

volutions. arXiv preprint arXiv: 1409.4842, 2014.

49. Radu Timofte, Karel Zimmermann, and Luc Van Gool. Multi-view traffic sign

detection, recognition, and 3D localisation. Machine Vision and Applications,

25(3):633–647, 2014.

50. J. R R Uijlings, K. E A Van De Sande, T. Gevers, and A. W M Smeulders.

Selective search for object recognition. International Journal of Computer Vision,

104(2):154–171, 2013.

51. C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD

Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute

of Technology, 2011.

52. Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable

are features in deep neural networks? Advances in Neural Information Processing

Systems 27 (Proceedings of NIPS), 27:1–9, 2014.

138

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03-2017 Master’s Thesis Jun 2015 — Mar 2017

Transfer Learning in Convolutional Neural Networks for Fine-Grained
Image Classification

16G189

Becherer, Nicholas C. 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-17-M-005

Ba T. Nguyen
DR-03, Senior Flight Control Engineer
Aerospace Systems Directorate
2130 Eighth Street, WPAFB, OH 45433-7542
COMM 937-938-4617
Email: ba.nguyen@us.af.mil

AFRL/RQQC

DISTRIBUTION STATEMENT A:
Approved for Public Release; distribution unlimited.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

In recent years, convolutional neural networks have achieved state of the art performance in a number of computer vision
problems such as image classification. Prior research has shown that a transfer learning technique known as parameter
fine-tuning wherein a network is pre-trained on different datasets can boost the performance of these networks. However,
the topic of identifying the best source dataset and learning strategy for a given target domain is largely unexplored.
Thus, this research presents and evaluates various transfer learning methods for fine-grained image classification as well
as the effect on ensemble networks. The main contributions are a framework to evaluate the effectiveness of transfer
learning, an optimal strategy for parameter fine-tuning, and a thorough demonstration of its effectiveness. The
experimental framework and findings will help to train models in reduced time and with improved accuracy for target
recognition and automated aerial refueling.

Convolutional Neural Networks, Transfer Learning, Parameter Fine-tuning, Image Classification, Computer Vision

U U U U 157

Lt Col John Pecarina, AFIT/ENG

(937) 255-3636, x3368; john.pecarina@afit.edu

